An ad-hoc, yet widely adopted approach to investigate complex molecular objects in motion using importance-sampling schemes involves two steps, namely (i) mapping the multidimensional free-energy landscape that characterizes the movements in the molecular object at hand and (ii) finding the most probable transition path connecting basins of the free-energy hyperplane. To achieve this goal, we turn to an importance-sampling algorithm, coined well-tempered metadynamics-extended adaptive biasing force (WTM-eABF), aimed at mapping rugged free-energy landscapes, combined with a path-searching algorithm, which we call multidimensional lowest energy (MULE), to identify the underlying minimum free-energy pathway in the collective-variable space of interest. First, the well-tempered feature of the importance-sampling scheme confers to the latter an asymptotic convergence, while the overall algorithm inherits the advantage of high sampling efficiency of its predecessor, meta-eABF, making its performance less sensitive to user-defined parameters. Second, the Dijkstra algorithm implemented in MULE is able to identify with utmost efficiency a pathway that satisfies minimum free energy of activation among all the possible routes in the multidimensional free-energy landscape. Numerical simulations of three molecular assemblies indicate that association of WTM-eABF and MULE constitutes a reliable, efficient and robust approach for exploring coupled movements in complex molecular objects. On account of its ease of use and intrinsic performance, we expect WTM-eABF and MULE to become a tool of choice for both experts and nonexperts interested in the thermodynamics and the kinetics of processes relevant to chemistry and biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.