Polaron formation is ubiquitous in polarized materials, but severely hampers carrier transport for which effective controlling methods are urgently needed. Here, we show that laser-controlled coherent phonon excitation enables orders of magnitude enhancement of carrier mobility via accelerating polaron transport in a prototypical material, lithium peroxide (Li
2
O
2
). The selective excitation of specific phonon modes, whose vibrational pattern directly overlap with the polaronic lattice deformation, can remarkably reduce the energy barrier for polaron hopping. The strong nonadiabatic couplings between the electronic and ionic subsystem play a key role in triggering the migration of polaron, via promoting phonon-phonon scattering in
q
space within sub-picoseconds. These results extend our understanding of polaron transport dynamics to the nonequilibrium regime and allow for optoelectronic devices with ultrahigh on-off ratio and ultrafast responsibility, competitive with those of state-of-the-art devices fabricated based on free electron transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.