The relationship between nucleophilicity and the structure/environment of the nucleophile is of fundamental importance in organic chemistry. In this work, we have measured nucleophilicities of a series of substituted alkoxides in the gas phase. The functional group substitutions affect the nucleophiles through ion-dipole, ion-induced dipole interactions and through hydrogen bonding whenever structurally possible. This set of alkoxides serves as an ideal model system for studying nucleophiles under microsolvation settings. Marcus theory was applied to analyze the results. Using Marcus theory, we separate nucleophilicity into two independent components, an intrinsic nucleophilicity and a thermodynamic driving force determined solely by the overall reaction exothermicity. It is found that the apparent nucleophilicities of the substituted alkoxides are always much lower than those of the unsubstituted ones. However, ion-dipole, ion-induced dipole interactions, by themselves, do not significantly affect the intrinsic nucleophilicity; the decrease in the apparent nucleophilicity results from a weaker thermodynamic driving force. On the other hand, hydrogen bonding not only stabilizes the nucleophile but also increases the intrinsic barrier height by 3 to approximately 4 kcal mol (-1). In this regard, the hydrogen bond is not acting as a perturbation in the sense of an external dipole but more directly affects the electronic structure and reactivity of the nucleophilic alkoxide. This finding offers a deeper insight into the solvation effect on nucleophilicity, such as the remarkably lower reactivities in nucleophilic substitution reactions in protic solvents than in aprotic solvents.
Exhaust flue gas from fossil fuel combustion usually contains a large quantity of SO2 and NO. In this paper, a process of simultaneous removal of NO and SO2 by ozone oxidation combined with NaOH absorption was chosen. The main investigations involved O3 decomposition, factors affecting NO oxidation (O3 dosage, reaction temperature, NO initial concentration, and presence of SO2), and NaOH absorption. The results indicated O3 decomposition rate increased as temperature rose and was less affected by initial concentration of O3. The optimal temperature for NO oxidation was 150 °C. NO oxidation efficiency increased with the increase of O3 dosage at a fixed temperature. NO initial concentration and the presence of SO2 had a slight effect on NO oxidation. The NO oxidation efficiency remained above 90% when n O3 /n NO was 1. Absorption by NaOH solution resulted in the final removal of above 99% NO, 90% NO2, and nearly 100% SO2 at pH above 11.
In this paper, a new synthetic way to modify naphthalene diimide (NDI) at "shoulder" positions is reported. The key step of the transformation is the intramolecular cyclization involving ethynyl and imidecarbonyl groups. The structure of the intermediate pyrylium cation was confirmed by X-ray crystal structural analysis. New conjugated molecules 1a-g were successfully synthesized in acceptable yields. Their absorption and fluorescence spectra were measured. Among them 1c-f are strongly emissive in solutions. Furthermore, 1b-f are also fluorescent in their solid states; in particular, 1b exhibits a typical aggregation-induced enhanced emission feature. Yellow-emissive microfibrils of 1d show potential optical waveguide behavior. HOMO/LUMO energies of 1a-f were determined based on their cyclic voltammograms. The results also reveal that HOMO/LUMO energies of these new conjugated molecules are influenced by the two flanking moieties. Notably, the thin film of 1c that is emissive shows p-type semiconducting behavior with hole mobility up to 0.0063 cm(2) V(-1) s(-1) based on the transfer and output characteristics of the OFET (organic field effect transistor).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.