Research on precipitation regularity in the past 120 years is an important link in analyzing the precipitation characteristics of watersheds. This paper systematically analyzes the characteristic changes of centennial precipitation data in the Haihe River basin with the help of CRU data, PCI, SPI, and the Pearson type III curve. The results show that the spatial and temporal distribution of precipitation in the Haihe River basin has a more obvious inconsistency. The temporal distribution shows the characteristics of relatively stable in the early period and increasing fluctuation in the later period, the concentration of precipitation gradually decreases, and the overall drought level decreases. The spatial distribution shows a general pattern of gradually decreasing from southwest to northeast, the overall trend of summer precipitation changes from stable to north–south extremes, and the distribution probability of extreme precipitation events in the basin decreases from southeast to northwest, while the drought-prone area transitions from the northeast to the west and southwest of the basin. Under the influence of both climate change and human activities, the seasonal distribution of precipitation tends to be average, the area affected by extreme precipitation rises, and the arid area shifts to the inland area.
In order to systematically analyze the impacts of climate change and human activities on runoff, this paper takes the Zhanghe River Basin, which is greatly affected by human activities, as the research object, constructs an attribution analysis model of runoff changes based on historical data and the SWAT (Soil and Water Assessment Tool) model. The results show that the runoff of the watershed has significantly decreased in the past 60 years, in which the contribution rate of climate change is 36.2% and that of human activities is 63.8%. Among the climate change factors, precipitation is the main contributing factor and canal diversion is the main contributing factor among human activities. In addition, with the decrease in precipitation during the flood season and the increase in the crop planting area in the catchment, the distribution of canal water diversion has also changed, and the water consumption of summer crops has gradually become the main factor affecting canal water diversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.