A deep understanding of multipath characteristics is essential to design signal simulators and receivers in global navigation satellite system applications. As a new constellation is deployed and more applications occur in the urban environment, the statistical multipath models of navigation signal need further study. In this paper, we present statistical distribution models of multipath time delay, multipath power attenuation, and multipath fading frequency based on the experimental data in the urban canyon environment. The raw data of multipath characteristics are obtained by processing real navigation signal to study the statistical distribution. By fitting the statistical data, it shows that the probability distribution of time delay follows a gamma distribution which is related to the waiting time of Poisson distributed events. The fading frequency follows an exponential distribution, and the mean of multipath power attenuation decreases linearly with an increasing time delay. In addition, the detailed statistical characteristics for different elevations and orbits satellites is studied, and the parameters of each distribution are quite different. The research results give useful guidance for navigation simulator and receiver designers.
Noise uncertainty and signal-to-noise ratio (SNR) wall are two very serious problems in spectrum sensing of cognitive radio (CR) networks, which restrict the applications of some conventional spectrum sensing methods especially under low SNR circumstances. In this study, an optimal dynamic stochastic resonance (SR) processing method is introduced to improve the SNR of the receiving signal under certain conditions. By using the proposed method, the SNR wall can be enhanced and the sampling complexity can be reduced, accordingly the noise uncertainty of the received signal can also be decreased. Based on the well-studied overdamped bistable SR system, the theoretical analyses and the computer simulations verify the effectiveness of the proposed approach. It can extend the application scenes of the conventional energy detection especially under some serious wireless conditions especially low SNR circumstances such as deep wireless signal fading, signal shadowing and multipath fading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.