The FASER experiment is a new small and inexpensive experiment that is placed 480 meters downstream of the ATLAS experiment at the CERN LHC. FASER is designed to capture decays of new long-lived particles, produced outside of the ATLAS detector acceptance. These rare particles can decay in the FASER detector together with about 500–1000 Hz of other particles originating from the ATLAS interaction point. A very high efficiency trigger and data acquisition system is required to ensure that the physics events of interest will be recorded. This paper describes the trigger and data acquisition system of the FASER experiment and presents performance results of the system acquired during initial commissioning.
Measurements of the top-antitop quark pair production charge asymmetry in the dilepton channel, characterized by two high-p T leptons (electrons or muons), are presented using data corresponding to an integrated luminosity of 20.3 fb −1 from pp collisions at a center-of-mass energy ffiffi ffi s p ¼ 8 TeV collected with the ATLAS detector at the Large Hadron Collider at CERN. Inclusive and differential measurements as a function of the invariant mass, transverse momentum, and longitudinal boost of the tt system are performed both in the full phase space and in a fiducial phase space closely matching the detector acceptance. Two observables are studied: A
In the recent years, the vulnerabilities of conventional public key infrastructure are exposed by the real-world attacks, such as the certificate authority's single-point-of-failure or clients' private information leakage. Aimed at the first issue, one type of approach is that multiple entities are introduced to assist the certificate operations, including registration, update, and revocation. However, it is inefficient in computation. Another type is to make the certificate information publicly visible by bringing in the log servers. Nevertheless, the data synchronization among log servers may lead to network latency. Based on the second approach, the blockchain-based public key infrastructure schemes are proposed. Through these type of schemes, all the certificate operations are stored in the blockchain for public audit. However, the issue of revoked certificates' status storage is worth paying attention, especially in the setting with massive certificates. In addition, the target web server that a client wants to access is exposed in the process of certificate status validation. In this paper, we propose a privacy-preserving blockchain-based certificate status validation scheme called PBCert to solve these two issues. First, we separate the revoked certificates control and storage plane. Only the minimal control information (namely, certificate hashes and related operation block height) is stored in the blockchain and it uses external data stores for the detailed information about all revoked certificates. Second, we design an obscure response to the clients' certificate status query for the purpose of privacy preserving. Through the security analysis and experiment evaluation, our scheme is significant in practice.
INDEX TERMSPublic key infrastructure, blockchain, revocation mechanism, privacy-preserving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.