The generation of large numbers of functional human hepatocytes for cell-based approaches to liver disease is an important and unmet goal. Direct reprogramming of fibroblasts to hepatic lineages could offer a solution to this problem but so far has only been achieved with mouse cells. Here, we generated human induced hepatocytes (hiHeps) from fibroblasts by lentiviral expression of FOXA3, HNF1A, and HNF4A. hiHeps express hepatic gene programs, can be expanded in vitro, and display functions characteristic of mature hepatocytes, including cytochrome P450 enzyme activity and biliary drug clearance. Upon transplantation into mice with concanavalin-A-induced acute liver failure and fatal metabolic liver disease due to fumarylacetoacetate dehydrolase (Fah) deficiency, hiHeps restore the liver function and prolong survival. Collectively, our results demonstrate successful lineage conversion of nonhepatic human cells into mature hepatocytes with potential for biomedical and pharmaceutical applications.
The generation of haematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) will depend on the accurate recapitulation of embryonic haematopoiesis. In the early embryo, HSCs develop from the haemogenic endothelium (HE) and are specified in a Notch-dependent manner through a process named endothelial-to-haematopoietic transition (EHT). As HE is associated with arteries, it is assumed that it represents a subpopulation of arterial vascular endothelium (VE). Here we demonstrate at a clonal level that hPSC-derived HE and VE represent separate lineages. HE is restricted to the CD34+CD73−CD184− fraction of day 8 embryoid bodies (EBs) and it undergoes a NOTCH-dependent EHT to generate RUNX1C+ cells with multilineage potential. Arterial and venous VE progenitors, by contrast, segregate to the CD34+CD73medCD184+ and CD34+CD73hiCD184− fractions, respectively. Together, these findings identify HE as distinct from VE and provide a platform for defining the signalling pathways that regulate their specification to functional HSCs.
The embryonic stem cell differentiation system was used to define the roles of the Activin/Nodal, BMP, and canonical Wnt signaling pathways at three distinct developmental stages during hematopoietic ontogeny: induction of a primitive streak-like population, formation of Flk1(+) mesoderm, and induction of hematopoietic progenitors. Activin/Nodal and Wnt, but not BMP, signaling are required for the induction of the primitive streak. Although BMP is not required for primitive streak induction, it displays a strong posteriorizing effect on this population. All three signaling pathways regulate induction of Flk1(+) mesoderm. The specification of Flk1(+) mesoderm to the hematopoietic lineages requires VEGF and Wnt, but not BMP or Activin/Nodal signaling. Specifically, Wnt signaling is essential for commitment of the primitive erythroid, but not the definitive lineages. These findings highlight dynamic changes in signaling requirements during blood cell development and identify a role for Wnt signaling in the establishment of the primitive erythroid lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.