Elderly females, particularly those carrying the apolipoprotein E (ApoE)-ε4 allele, have a higher risk of developing Alzheimer's disease (AD). However, the underlying mechanism for this increased susceptibility remains unclear. In this study, we investigated the effects of the ApoE genotype and gender on the proteome of synaptosomes. We isolated synaptosomes and used label-free quantitative proteomics, to report, for the first time, that the synaptosomal proteomic profiles in the cortex of female human-ApoE4 mice exhibited significantly reduced expression of proteins related to energy metabolism, which was accompanied by increased levels of oxidative stress. In addition, we also first demonstrated that the proteomic response in synaptic termini was more susceptible than that in the soma to the adverse effects induced by genders and genotypes. This suggests that synaptic mitochondria might be 'older' than mitochondria in the soma of neurons; therefore, they might contain increased cumulative damage from oxidative stress. Furthermore, female human-ApoE4 mice had much lower oestrogen levels in the cortex and treatment with oestrogen protected ApoE3 stable transfected C6 neurons from oxidative stress. Overall, this study reveals complex ApoE- and gender-dependent effects on synaptic function and also provides a basis for future studies of candidates based on specific pathways involved in the pathogenesis of AD. The lack of oestrogen-mediated protection regulated by the ApoE genotype led to synaptic mitochondrial dysfunction and increased oxidative stress, which might make older females more susceptible to AD.
BackgroundNonalcoholic fatty liver disease (NAFLD) represents one of the most common forms of liver disease worldwide, and it is always regarded as a consequence of a sedentary, food-abundant lifestyle, sitting for an extended time, and a low physical activity level, which often coincide with chronic and long-lasting psychological stress. A Chinese medicine Sinisan (SNS) may be a potential formula for treating this kind of disease.MethodsIn this study, a long-term chronic restraint stress protocol was used to investigate the mechanism underlying stress-induced NALFD. To investigate the effect of SNS treatment on stress-induced NAFLD, we measured the liver and serum values of total cholesterol (TC), triglyceride (TG), liver free fatty acids (FFA), low-density lipoprotein, superoxide dismutase, tumor necrosis factor-α, malondialdehyde, interleukin (IL)-6, and serum values of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase. Results are shown as a mean ± standard deviation. Significant differences between the groups were evaluated using the Student t-test. For multiple comparisons, one-way analysis of variance (ANOVA) was used. If the results of ANOVA indicated significant differences, post hoc analysis was performed with the Tukey test or Dunnett test, and p < 0.05 was considered statistically significant.ResultsLong-term chronic stress led to steatosis and non-alcoholic steatohepatitis. Additionally, SNS treatment significantly increased body weight gain (p < 0.01) and sucrose preference (p < 0.001), and it reduced the liver values of TC, TG, and FFA (p < 0.05). SNS also reduced the serum values of AST and ALT (p < 0.001), and the liver value of IL-6 (p < 0.01).ConclusionsThis study’s results demonstrate that psychological stress may be a significant risk factor of NAFLD. Furthermore, the traditional Chinese medicine formula SNS may have some beneficial effect in antagonizing psychological stress and stress-related NAFLD.
Corticotropin-releasing hormone (CRH) is considered the driving force of the hypothalamo-pituitary-adrenal (HPA) axis and plays an important role in mood regulation. The HPA axis is reported to be closely related to acute stress-induced tau phosphorylation in the rodent hippocampus. However, the relationship between the hyperactive HPA axis and tau phosphorylation in the hippocampus and hence the functional implications for chronic stress are not fully understood. In this study, we aimed to examine tau phosphorylation and the effect on axonal transport of mitochondria in the hippocampus of a chronic stress model. A mouse model was created by neonatal isolation before weaning, followed by chronic mild stress by social isolation after weaning. Behavioural tests showed that the model had a typical depression/anxiety-like behaviour accompanied by increased plasma corticosterone level and hypothalamic CRH mRNA expression. Phosphorylated tau increased significantly, accompanied by increased synaptosomal mitochondrial levels in hippocampus of the chronic stress model. CRH receptor 1 antagonist (CP154,526) treatment, not glucocorticoid receptor antagonist (RU486) treatment, decreased tau phosphorylation and synaptosomal mitochondrial levels in the hippocampus of the mouse model. Consistent with an in-vivo model, when hyperphosphorylated tau was inhibited by lithium in cultured primary hippocampal neurons, mitochondrial transport monitored by live imaging was also decreased. We show here for the first time that phosphorylated tau in the hippocampus of a chronic stress model, accompanied by increased mitochondrial transport, was mediated by CRH receptor 1, not by glucocorticoid receptors, which suggests that centrally derived CRH may be involved in the process of mitochondrial axon transport and hence play an important role in hippocampus of a chronic stress model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.