The direct-drive servo system of H-type platform is easily affected by load disturbance and mechanical coupling. In this paper, a discrete-time integral sliding mode position control method based on smooth saturation function is proposed. First, the discrete-time mathematical model of direct-drive servo system with mechanical coupling characteristics is established with the position and speed of mover as state variables. Then, a discrete-time integral sliding mode position controller is designed to reduce the influence of external disturbance, and improve the tracking accuracy of the system. At the same time, in order to weaken the chattering caused by the sign function in the control law, a smooth saturation function is designed to replace the original sign function, and the advantages of the smooth saturation function are analyzed and proved. Finally, the simulation and experimental results show that the proposed method not only improves the position tracking accuracy of the system, weakens the chattering, but also enhances the robustness of the system to load disturbance.
In the dual‐motor servo system driven by permanent magnet linear synchronous motor, a synchronous control strategy based on coupling parameter identification algorithm and feedback linearization decoupling controller is proposed to overcome the influence of mechanical coupling on the synchronous control performance of the system. Firstly, the mathematical model of synchronous motion system with mechanical coupling dynamics is established. Secondly, a novel coupling parameter identification structure based on disturbance observer is designed. Additionally, the input excitation adopts relatively smooth sinusoidal position and velocity signals to avoid damage to the mechanical structure. Then the feedback linearization method is used to decouple the coupled synchronous control system, and the integrated sliding mode controller is designed for the linear subsystem to improve the robustness of the system. Finally, the experimental results show that the proposed identification method can accurately identify the coupling parameters of the system, and the feedback linearized sliding mode controller based on the identification parameters can effectively eliminate the influence of mechanical coupling and improve the performance of synchronous control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.