The gut microbiota (GM) is related to obesity and other metabolic diseases. To detect GM markers for obesity in patients with different metabolic abnormalities and investigate their relationships with clinical indicators, 1,914 Chinese adults were enrolled for 16S rRNA gene sequencing in this retrospective study. Based on GM composition, Random forest classifiers were constructed to screen the obesity patients with (Group OA) or without metabolic diseases (Group O) from healthy individuals (Group H), and high accuracies were observed for the discrimination of Group O and Group OA (areas under the receiver operating curve (AUC) equal to 0.68 and 0.76, respectively). Furthermore, six GM markers were shared by obesity patients with various metabolic disorders (Bacteroides, Parabacteroides, Blautia, Alistipes, Romboutsia and Roseburia). As for the discrimination with Group O, Group OA exhibited low accuracy (AUC = 0.57). Nonetheless, GM classifications to distinguish between Group O and the obese patients with specific metabolic abnormalities were not accurate (AUC values from 0.59 to 0.66). Common biomarkers were identified for the obesity patients with high uric acid, high serum lipids and high blood pressure, such as Clostridium XIVa, Bacteroides and Roseburia. A total of 20 genera were associated with multiple significant clinical indicators. For example, Blautia, Romboutsia, Ruminococcus2, Clostridium sensu stricto and Dorea were positively correlated with indicators of bodyweight (including waistline and body mass index) and serum lipids (including low density lipoprotein, triglyceride and total cholesterol). In contrast, the aforementioned clinical indicators were negatively associated with Bacteroides, Roseburia, Butyricicoccus, Alistipes, Parasutterella, Parabacteroides and Clostridium IV. Generally, these biomarkers hold the potential to predict obesity-related metabolic abnormalities, and interventions based on these biomarkers might be beneficial to weight loss and metabolic risk improvement.
To explore the antibiotic body burden of Chinese school children, total urinary concentrations (free and conjugated) of 18 representative antibiotics (5 macrolides, 2 β-lactams, 3 tetracyclines, 4 quinolones, and 4 sulfonamides) were measured by ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry among 1064 school students recruited from 3 economically and geographically distinct areas in east China in 2013. All 18 antibiotics were detected in urine samples with the detection frequencies ranging from 0.4 to 19.6%. The antibiotics were detected in 58.3% of urine samples overall, and this detection frequency reached at 74.4% in one study site. Of them, 47.8% of the urine samples had a sum of mass concentration of all antibiotics between 0.1 (minimum) and 20.0 ng/mL, and 8 antibiotics had their concentrations of above 1000 ng/mL in some urine samples. Three veterinary antibiotics, 4 human antibiotics, and 11 human/veterinary antibiotics were found overall in 6.3, 19.9, and 49.4% of urine samples, respectively. The detection frequencies and concentration levels of antibiotics in urine samples differed by study areas. Concerning mixed exposures, a total of 137 combinations of antibiotics and 20 combinations of antibiotic categories were found overall. Two or more antibiotics or categories were concurrently detected in more than 20% of urine samples. On the basis of a usage analysis, contaminated food or environment might be relevant exposure sources for tetracyclines, quinolones, and sulfonamides.
There is great potential to understand the functional diversity of microorganisms that are involved in waste water treatment through metagenomic analyses. This study presents the first metagenomic comparison of taxonomic and functional profiles of the microbial communities occurring in different aggregates from anaerobic ammonium-oxidizing (anammox) bioreactors. The anammox bacterial communities in both biofilm and granule sludge samples showed relatively high abundance and diversity compared with floccular sludge. Four of the five known genera of anammox bacteria were detected in the three cultures except Candidatus Jettenia, which was absent in the granules. Candidatus Kuenenia comprised the major population of anammox bacteria in these three sludges, independent of their growth morphologies. The genome assembled for the Candidatus Kuenenia in the granule was very similar to the published reference genome of Candidatus K. stuttgartiensis. Genes involved in the metabolism of the anammox process were highly detected in the biofilm and granule sludges. In particular, the abundance of hydrazine synthase gene (hzs) in the biofilm was around 486 times more pronounced than that in the granules. The knowledge gained in this study highlights an important role of sludge aggregate in affecting community structure and metabolic potential of anammox systems.
Idiopathic central precocious puberty (ICPP) is a relatively common condition in preadolescent girls, and its pathogenesis remains to be uncovered. A variety of studies have highlighted the association of gut microbiota (GM) with endocrine diseases, such as obesity, which is commonly associated with ICPP. However, the relationship between GM and ICPP remains unexplored. Feces samples were collected from 25 girls with ICPP (ICPP group) and 23 healthy girls (Control group). We applied 16S rDNA sequencing to compare the GM between two groups. The ICPP group had higher GM diversity and was enriched for several GM species, including Ruminococcus gnavus, Ruminococcus callidus, Ruminococcus bromii, Roseburia inulinivorans, Coprococcus eutactus, Clostridium leptum, and Clostridium lactatifermentans, which are known to be associated with obesity and are related to the production of short-chain fatty acids. Additionally, 36 candidate GM biomarkers for patients with ICPP screening were identified with high accuracy (AUC = 0.95, 95% CI 0.88 to 1). We observed that the GM of the ICPP group was enriched for the microbial functions of cell motility, signal transduction, and environmental adaptation. Positive correlations were also detected between Fusobacterium and follicle-stimulating hormone, and Gemmiger and luteinizing hormone. This study documents relationships between GM and ICPP, and the implication of these findings remains to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.