Accumulating evidence has indicated the significant roles of long noncoding RNAs (lncRNAs) in the pathophysiology of diabetic nephropathy (DN). LncRNA nuclear enriched abundant transcript 1 (NEAT1) has been reported to exert a key role in the progression of several diseases including diabetes. However, the role of NEAT1 in the regulation of DP progression remains barely known. Therefore, our study aimed to investigate the role of NEAT1 in a streptozotocin‐induced diabetes model (DM) of rats and glucose‐induced mouse mesangial cell models. Currently, we found that NEAT1 was greatly upregulated in DM rats and glucose‐induced mice mesangial cells, in which a high activation of Akt/mTOR signaling was also observed. Then, it was shown that knockdown of NETA1 was able to reduce renal injury in DM rats obviously. In addition, cell counting kit‐8 assay and 5‐ethynyl‐2′‐deoxyuridine assay were carried out and we observed downregulation of NEAT1 significantly inhibited mesangial cell proliferation. Meanwhile, extracellular matrix proteins and messenger RNA (transforming growth factor β1, fibronectin, and collagen IV) expression was dramatically restrained by silencing of NEAT1 in the high glucose‐induced mesangial cells. Finally, knockdown of NEAT1 greatly reduced the expression of the phosphorylation of Akt and mammalian target of rapamycin (mTOR) in vitro. These findings revealed that the decrease of NEAT1 repressed the proliferation and fibrosis in DN via activating the Akt/mTOR signaling pathway, which might represent a novel pathological mechanism of DN progression.
Purpose In colorectal cancer (CRC), whether the immune score can be used to predict the clinical prognosis of the patient has not been completely established. Besides, the prognostic values of tumor-infiltrating lymphocytes (TILs) in different anatomical locations, counting sites, and subtypes have been controversial. The purpose of this meta-analysis is to analyze and determine the prognostic value of TILs indices including TIL subsets, infiltrating sites, and anatomical sites. Methods Relevant literature was obtained by searching PubMed and Google Scholar. The pooled hazard ratio (HR) of the overall survival (OS), disease-free survival (DFS), and cancer-specific survival (CSS) was computed to investigate the prognostic significance of CD3+, CD8+, CD45RO+, and FOXP3+ T cells. Results A total of 22 studies involving 5108 patients were included in the meta-analysis. In CC, based on T cell subtypes analysis, the final results indicated that CD8+ and FOXP3+ infiltrating cells, but not CD3+ T cells were prognostic markers for DFS and OS. In addition, with regard to the counting location of TILs, subgroup analysis revealed that only high FOXP3+ infiltrates in the tumor stroma (ST) were significantly associated with OS (HR = 0.38, 95% confidence interval (CI) = 0.22–0.67, P = 0.0007), whereas in invasive margin (IM), high density of CD3+ infiltrating cells indicated increased DFS (HR = 0.76, 95% CI = 0.62–0.93, P = 0.008). At the tumor center (TC), high CD8+ T cells infiltration was associated with improved DFS (HR = 0.50, 95% CI = 0.38–0.65, P < 0.00001). In RC, whether CSS or OS, high-density TIL was associated with improved prognosis. Conclusion In a single counting site, high-density TILs reflect favorable prognostic value in CC or RC. For CC, more prospective studies are needed to verify whether different anatomical sites affect the distribution of TILs and thus the prognosis of patients. For RC, further studies should analyze the prognostic value of the immune score. Electronic supplementary material The online version of this article (10.1186/s12957-019-1621-9) contains supplementary material, which is available to authorized users.
BackgroundEmodin is a natural anthraquinone derivative isolated from the Rheum palmatum L. Aim: The aim of the present study was to investigate the effect of emodin on the apoptosis of the human cervical cancer line HeLa and to identify the mechanisms involved.MethodsRelative cell viability was assessed by MTT assay after treatment with emodin. Cell apoptosis was detected with TUNEL, Hoechst 33342 staining and quantified with flow cytometry using annexin FITC-PI staining.ResultsThe percentage of apoptotic cells was 0.8, 8.2, 22.1, and 43.7%, respectively. The mRNA levels of Caspase-9, -8 and −3 detected by Real-time PCR after treatment with emodin were significantly increased. Emodin increased the protein levels of Cytochome c, Apaf-1, Fas, FasL, and FADD but decreased the protein levels of Pro-caspase-9, Pro-caspase-8 and Pro-caspase-3.ConclusionWe conclude that the emodin inhibited HeLa proliferation by inducing apoptosis through the intrinsic mitochondrial and extrinsic death receptor pathways.
Diabetic nephropathy (DN) is one of the leading causes of end-stage renal diseases worldwide. This study is designed to investigate the underlying function and mechanism of a novel lncRNA GAS5 in the progression of DN. We found that lncRNA GAS5 expression level was decreased in type 2 diabetes (T2D) with DN compared with that in patients without DN. Moreover, lncRNA GAS5 expression level was negatively associated with the severity of DN-related complications. lncRNA GAS5 inhibited MCs proliferation and caused G0/1 phase arrest. lncRNA GAS5 overexpression alleviated the expression of fibrosis-related protein in mesangial cells (MCs). The dual-luciferase reporter assay and RNA binding protein immunoprecipitation (RIP) assay results revealed that lncRNA GAS5 functions as an endogenous sponge for miR-221 via both the directly targeting way and Ago2-dependent manner. Furthermore, SIRT1 was confirmed as a target gene of miR-221. lncRNA GAS5 upregulated SIRT1 expression and inhibited MCs proliferation and fibrosis by acting as an miR-221 sponge. Finally, we found that lncRNA GSA5 suppressed the development of DN in vivo. Thus, lncRNA GAS5 was involved in the progression of DN by sponging miR-221 and contributed to lncRNA-directed diagnostics and therapeutics in DN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.