Carbon dots (CDs) have a wide range of applications in chemical, physical and biomedical research fields. We are particularly interested in the use of CDs as fluorescence nanomaterials for targeted tumor cell imaging. One of the important aspects of success is to enhance the fluorescence quantum yields (QY) of CDs as well as increase their targetability to tumor cells. However, most of the reported CDs are limited by relative low QY. In the current study, for the first time, one-step synthesis of highly luminescent CDs by using folic acid (FA) as single precursor was obtained in natural water through hydrothermal method. The as-prepared CDs exhibited QY as high as 94.5% in water, which is even higher than most of organic fluorescent dyes. The obtained CDs showed excellent photoluminescent activity, high photostability and favorable biocompatibility. The FA residuals in CDs led to extraordinary targetability to cancer cells and promoted folate receptor-mediated cellular uptake successfully, which holds a great potential in biological and bioimaging studies.
Hydrogenated microcrystalline silicon ͑ c-Si:H͒ thin-film solar cells were prepared at high rates by very high frequency plasma-enhanced chemical vapor deposition under high working pressure. The influence of deposition parameters on the deposition rate ͑R D ͒ and the solar cell performance were comprehensively studied in this paper, as well as the structural, optical, and electrical properties of the resulting solar cells. Reactor-geometry adjustment was done to achieve a stable and homogeneous discharge under high pressure. Optimum solar cells are always found close to the transition from microcrystalline to amorphous growth, with a crystallinity of about 60%. At constant silane concentration, an increase in the discharge power did hardly increase the deposition rate, but did increase the crystallinity of the solar cells. This results in a shift of the c-Si:H/a-Si:H transition to higher silane concentration, and therefore leads to a higher R D for the optimum cells. On the other hand, an increase in the total flow rate at constant silane concentration did lead to a higher R D , but lower crystallinity. With this shift of the c-Si:H/a-Si:H transition at higher flow rates, the R D for the optimum cells decreased. A remarkable structure development along the growth axis was found in the solar cells deposited at high rates by a "depth profile" method, but this does not cause a deterioration of the solar cell performance apart from a poorer blue-light response. As a result, a c-Si:H single-junction p-i-n solar cell with a high efficiency of 9.8% was deposited at a R D of 1.1 nm/s.
We study both the static properties and dynamic behavior of liquid water marbles coated with silica nanoparticles of varied hydrophobicity. The static properties are characterized by the variation of marble height and diameter with increasing marble volume, such that the effective surface tension g eff of the marble can be obtained. The dynamic behavior of liquid marbles includes their impingement on a solid surface and their compression between two parallel glass plates. Marbles coated with particles of intermediate hydrophobicity exhibit maximum g eff values and enhanced mechanical robustness. Due to particle detachment from or particle rearrangement at the air-water interface caused by the impact, the dynamic surface tensions g d of liquid water marbles are different in magnitude to those of g eff . In fact, g d plays an important role in determining the contact time and oscillation period during the impact and rebound processes. Our results show that both the static effective and dynamic surface tension depend on the hydrophobicity of the particles coating the marble surfaces.
Liquid marbles have promising applications in the field of microreactors, where the opening and closing of their surfaces plays a central role. We have levitated liquid water marbles using an acoustic levitator and, thereby, achieved the manipulation of the particle shell in a controlled manner. Upon increasing the sound intensity, the stable levitated liquid marble changes from a quasi-sphere to a flattened ellipsoid. Interestingly, a cavity on the particle shell can be produced on the polar areas, which can be completely healed when decreasing the sound intensity, allowing it to serve as a microreactor. The integral of the acoustic radiation pressure on the part of the particle surface protruding into air is responsible for particle migration from the center of the liquid marble to the edge. Our results demonstrate that the opening and closing of the liquid marble particle shell can be conveniently achieved via acoustic levitation, opening up a new possibility to manipulate liquid marbles coated with non-ferromagnetic particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.