Ovarian cancer is the most lethal gynecologic malignancy. Surgery and chemotherapy are the primary treatments for ovarian cancer; however, patients often succumb to recurrence with chemotherapeutic resistance within several years after the initial treatment. In the past two decades, immunotherapy has rapidly developed, and has revolutionized the treatment of various types of cancer. Despite the fact that immunotherapy response rates among ovarian cancer patients remain modest, treatment with immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR)- and TCR-engineered T cells is rapidly developing. Therapeutic efficiency could be improved significantly if immunotherapy is included as an adjuvant therapy, in combination with chemotherapy, radiation therapy, and the use of anti-angiogenesis drugs, and poly ADP ribose polymerase inhibitors (PARPi). Newly developed technologies that identify therapeutic targets, predict treatment efficacy, rapidly screen potential immunotherapy drugs, provide neoadjuvant immunotherapy, and utilize nanomedicine technology provide new opportunities for the treatment of ovarian cancer, and have the potential to prolong patient survival. However, important issues that may hinder the efficacy of such approaches, including hyperprogressive disease (HPD), immunotherapy-resistance, and toxicity of the treatments, including neurotoxicity, must be taken into account and addressed for these therapies to be effective.
Prostate cancer is one of the most common types of cancer affecting men worldwide; however, its etiology and pathological mechanisms remain poorly understood. Mechanical stimulation plays a key role in prostate cancer development. Piezo type mechanosensitive ion channel component 1 (Piezo1), which functions as a cell sensor and transducer of mechanical stimuli, may have a crucial role in the development of prostate cancer. In the present study, the expression of the Piezo1 channel was demonstrated to be significantly elevated in prostate cancer cell lines and in human prostate malignant tumor tissues. Downregulation of Piezo1 significantly suppressed the viability, proliferation and migration of prostate cancer cells in vitro , and inhibited prostate tumor growth in vivo . The activation of the Akt/mTOR pathway or acceleration of cell cycle progression from G 0 /G 1 to S phase may downstream consequences of Piezo 1 signal pathway activation. Downregulation of Piezo1 considerably suppressed Ca 2+ signal increments, inhibited the phosphorylation of Akt and mTOR and arrested the cell cycle of prostate cancer cells at G 0 /G 1 phase in while inhibiting the activation of CDK4 and cyclin D1. Taken together, these findings suggest that Piezo1 channels have a crucial role in prostate cancer development and may, therefore, be a novel therapeutic target in the treatment of prostate cancer.
We study both the static properties and dynamic behavior of liquid water marbles coated with silica nanoparticles of varied hydrophobicity. The static properties are characterized by the variation of marble height and diameter with increasing marble volume, such that the effective surface tension g eff of the marble can be obtained. The dynamic behavior of liquid marbles includes their impingement on a solid surface and their compression between two parallel glass plates. Marbles coated with particles of intermediate hydrophobicity exhibit maximum g eff values and enhanced mechanical robustness. Due to particle detachment from or particle rearrangement at the air-water interface caused by the impact, the dynamic surface tensions g d of liquid water marbles are different in magnitude to those of g eff . In fact, g d plays an important role in determining the contact time and oscillation period during the impact and rebound processes. Our results show that both the static effective and dynamic surface tension depend on the hydrophobicity of the particles coating the marble surfaces.
Manipulating the interfacial structure is vital to enhancing the interfacial thermal conductance (G) in Cu/diamond composites for promising thermal management applications. An interconnected interlayer is frequently observed in Cu/diamond composites; however, the G between Cu and diamond with an interconnected interlayer has not been addressed so far and thus is attracting extensive attention in the field. In this study, we designed three kinds of interlayers between a Cu film and a diamond substrate by magnetron sputtering coupled with heat treatment, including a W interlayer, an interconnected W–W2C interlayer, and a W2C interlayer, to comparatively elucidate the relationship between the interfacial structure and the interfacial thermal conductance. For the first time, we experimentally measured the G between Cu and diamond with an interconnected interlayer by a time-domain thermoreflectance technique. The Cu/W–W2C/diamond structure exhibits an intermediate G value of 25.8 MW/m2 K, higher than the 19.9 MW/m2 K value for the Cu/W2C/diamond structure and lower than the 29.4 MW/m2 K value for the Cu/W/diamond structure. The molecular dynamics simulations show that the G of the individual W2C/diamond interface is much higher than those of the individual Cu/diamond and W/diamond interfaces and W2C could reduce the vibrational mismatch between Cu and diamond; however, the G of the Cu/W2C/diamond structure is reduced by the lower thermal conductivity of W2C. This study provides insights into the relationship between the interconnected interfacial structure and the G between Cu and diamond and offers guidance for interface design to improve the thermal conductivity in Cu/diamond composites.
We investigate the impact dynamics of droplets containing silica nanoparticles and/or poly(ethylene oxide) (PEO) additives by using a high speed camera, and relate the impact behavior to the rheological properties of liquids. For a droplet with both particles and polymer additives, the rebound is damped much faster and the instability behavior is suppressed. Interestingly, the rebound can be inhibited even when impact is at high velocity (1.88 m s À1 ). The transition from ''rebound'' to ''stick'' by enhancing the impact velocity is mainly due to the increase of the friction force of the nanoparticles and polymer aggregates with the substrate. This is confirmed by the increase of the sliding angle with impact velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.