The human visual system encodes optical information perceived by photoreceptors in the retina into neural spikes and then processes them by the visual cortex, with high efficiency and low energy consumption. Inspired by this information processing mode, an universal artificial neuron constructed with a resistor (Rs) and a threshold switching memristor can realize rate coding by modulating pulse parameters and the resistance of Rs. Owing to the absence of an external parallel capacitor, the artificial neuron has minimized chip area. In addition, an artificial visual neuron is proposed by replacing Rs in the artificial neuron with a photo-resistor. The oscillation frequency of the artificial visual neuron depends on the distance between the photo-resistor and light, which is fundamental to acquiring depth perception for precise recognition and learning. A visual perception system with the artificial visual neuron can accurately and conceptually emulate the self-regulation process of the speed control system in driverless automobiles. Therefore, the artificial visual neuron can process efficiently sensory data, reduce or eliminate data transfer and conversion at sensor/processor interfaces, and expand its application in the field of artificial intelligence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.