In this paper, we investigate the issue of error bounds for symmetric cone complementarity problems (SCCPs). In particular, we show that the distance between an arbitrary point in Euclidean Jordan algebra and the solution set of the symmetric cone complementarity problem can be bounded above by some merit functions such as Fischer-Burmeister merit function, the natural residual function and the implicit Lagrangian function. The so-called R 0 -type conditions, which are new and weaker than existing ones in the literature, are assumed to guarantee that such merit functions can provide local and global error bounds for SCCPs. Moreover, when SCCPs reduce to linear cases, we demonstrate such merit functions cannot serve as global error bounds under general monotone condition, which implicitly indicates that the proposed R 0 -type conditions cannot be replaced by P -type conditions which include monotone condition as special cases.
It is well known that the second-order cone and the circular cone have many analogous properties. In particular, there exists an important distance inequality associated with the second-order cone and the circular cone. The inequality indicates that the distances of arbitrary points to the second-order cone and the circular cone are equivalent, which is crucial in analyzing the tangent cone and normal cone for the circular cone. In this paper, we provide an alternative approach to achieve the aforementioned inequality. Although the proof is a bit longer than the existing one, the new approach offers a way to clarify when the equality holds. Such a clarification is helpful for further study of the relationship between the second-order cone programming problems and the circular cone programming problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.