Natural language question/answering over RDF data has received widespread attention. Although there have been several studies that have dealt with a small number of aggregate queries, they have many restrictions (i.e., interactive information, controlled question or query template). Thus far, there has been no natural language querying mechanism that can process general aggregate queries over RDF data. Therefore, we propose a framework called NLAQ (Natural Language Aggregate Query). First, we propose a novel algorithm to automatically understand a user's query intention, which mainly contains semantic relations and aggregations. Second, to build a better bridge between the query intention and RDF data, we propose an extended paraphrase dictionary ED to obtain more candidate mappings for semantic relations, and we introduce a predicate-type adjacent set PT to filter out inappropriate candidate mapping combinations in semantic relations and basic graph patterns. Third, we design a suitable translation plan for each aggregate category and effectively distinguish whether an aggregate item is numeric or not, which will greatly affect the aggregate result. Finally, we conduct extensive experiments over real datasets (QALD benchmark and DBpedia), and the experimental results demonstrate that our solution is effective.
The recent growing interest for indoor localization-based services has created a need for more accurate and real-time indoor localization solutions. Indoor localization based on existing WiFi signal strength is becoming increasingly prevalent and ubiquity. In this paper, we utilize the information of the signal strength received from the surrounding access points (APs) to determine the user localization. The propose algorithm based on support vector machines (SVM) algorithm, and comparing with three kernel functions, radial basis function (RBF) performs best of all. Experimental results indicate that the proposed algorithm leads to improvement on localization accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.