Insect-specific ascoviruses with a circular genome are distributed in the USA, France, Australia and Indonesia. Here, we report the first ascovirus isolation from Spodoptera exigua in Hunan, China. DNA-DNA hybridization to published ascoviruses demonstrated that the new China ascovirus isolate is a variant of Heliothis virescens ascovirus 3a (HvAV-3a), thus named HvAV-3h. We investigated the phylogenetic position, cell infection, vesicle production and viral DNA replication kinetics of HvAV-3h, as well as its host-ranges. The major capsid protein (MCP) gene and the delta DNA polymerase (DNA po1) gene of HvAV-3h were sequenced and compared with the available ascovirus isolates for phylogenetic analysis. This shows a close relationship with HvAV-3g, originally isolated from Indonesia, HvAV-3e from Australia and HvAV-3c from United States. HvAV-3h infection induced vesicle production in the SeE1 cells derived from S. exigua and Sf9 cells derived from S. frugiperda , resulting in more vesicles generated in Sf9 than SeE1. Viral DNA replication kinetics of HvAV-3h also demonstrated a difference between the two cell lines tested. HvAV-3h could readily infect three important insect pests Helicoverpa armigera (Hübner), Spodoptera exigua (Hübner) and Spodoptera litura (Fabricius) from two genera in different subfamilies with high mortalities.
During cell infection, the fp25k gene of baculoviruses frequently mutates, producing the few polyhedra (FP) per cell phenotype with reduced polyhedrin (polh) expression levels compared with wild-type baculoviruses. Here we report that the fp25k gene of the model baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), contains two hypermutable seven-adenine (A7) mononucleotide repeats (MNRs) that were mutated to A8 MNRs and a TTAA site that had host DNA insertions, producing fp25k mutants during Sf21 cell infection. The FP phenotype in Sf9 and Hi5 cells was more pronounced than in Sf21 cells. AcMNPV fp25k mutants produced similar levels of polyhedra or enhanced GFP, which were both under the control of the AcMNPV polh promoter for expression, in Sf21 cells but lower levels in Sf9 and Hi5 cells compared with AcMNPV with an intact fp25k gene. This correlated with the polh mRNA levels detected in each cell line. The majority of Sf21 cells infected with fp25 mutants showed high polh promoter-mediated GFP expression levels. Two cell lines subcloned from Sf21 cells that were infected with fp25k mutants showed different GFP expression levels. Furthermore, a small proportion of Hi5 cells infected with fp25k mutants showed higher production of polyhedra and GFP expression than the rest, and the latter was not correlated with increased m.o.i. Therefore, these data suggest that AcMNPV polh promoter-mediated gene expression activities differ in the three cell lines and are influenced by different cells within the cell line.
Members of the family Baculoviridae are insect-specific dsDNA viruses that have been used for biological control of insect pests in agriculture and forestry, as well as in research and pharmaceutical protein expression in insect cells and larvae. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the type species of the family Baculoviridae. During infection of AcMNPV in permissive cells, fp25k mutants are positively selected, leading to the formation of the few polyhedra (FP) phenotype with reduced yield of polyhedra and reduced virion occlusion efficiency, which leads to decreased oral infectivity for insects. Here we report that polyhedra of AcMNPV fp25k mutants produced from different insect cell lines and insects have differences in larval per os infectivity, and that these variations are due to different virion occlusion efficiencies in these cell lines and insects. Polyhedra of AcMNPV fp25k mutants produced from Sf cells (Sf21 and Sf9, derived from Spodoptera frugiperda) and S. frugiperda larvae had poorer virion occlusion efficiency than those from Hi5 cells (derived from Trichoplusia ni) and T. ni larvae, based on immunoblots, DNA isolation and larval oral infection analysis. AcMNPV fp25k mutants formed clusters of FP and many polyhedra (MP) in the fat body cells of both T. ni and S. frugiperda larvae. Transmission electron microscopy revealed that the nature of virion occlusion of AcMNPV fp25k mutants was dependent on the different cells of the T. ni fat body tissue. Taken together, these results indicate that the FP phenotype and virion occlusion efficiency of fp25k mutants are influenced by the host insect cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.