Spinal cord injury (SCI) results in dysregulation of carbohydrate and lipid metabolism; the underlying cellular and physiological mechanisms remain unclear. Fibroblast growth factor 21 (FGF21) is a circulating protein primarily secreted by the liver that lowers blood glucose levels, corrects abnormal lipid profiles, and mitigates non-alcoholic fatty liver disease. FGF21 acts via activating FGF receptor 1 and β-klotho in adipose tissue and stimulating release of adiponectin from adipose tissue which in turn signals in the liver and skeletal muscle. We examined FGF21/adiponectin signaling after spinal cord transection in mice fed a high fat diet (HFD) or a standard mouse chow. Tissues were collected at 84 days after spinal cord transection or a sham SCI surgery. SCI reduced serum FGF21 levels and hepatic FGF21 expression, as well as β-klotho and FGF receptor-1 (FGFR1) mRNA expression in adipose tissue. SCI also reduced serum levels and adipose tissue mRNA expression of adiponectin and leptin, two major adipokines. In addition, SCI suppressed hepatic type 2 adiponectin receptor (AdipoR2) mRNA expression and PPARα activation in the liver. Post-SCI mice fed a HFD had further suppression of serum FGF21 levels and hepatic FGF21 expression. Elevated serum free fatty acid (FFA) levels after HFD feeding were observed in post-SCI mice but not in sham-mice, suggesting defective FFA uptake after SCI. Moreover, after SCI several genes that are implicated in insulins action had reduced expression in tissues of interest. These findings suggest that downregulated FGF21/adiponectin signaling and impaired responsiveness of adipose tissues to FGF21 may, at least in part, contribute to the overall picture of metabolic dysfunction after SCI.
Background: The role of Numb, a protein that is important for cell fate and development was investigated in adult skeletal muscle in mice using a conditional, inducible knockout (cKO) model. Methods: Numb expression was evaluated by Western blot. Numb localization was determined by confocal microscopy. The effects of cKO of Numb and the closely-related gene Numb-like in skeletal muscle fibers was evaluated by in-situ physiology; transmission and focused ion beam scanning electron microscopy; 3-dimensional reconstruction of mitochondrial; lipidomics; and bulk RNA-sequencing. Additional studies using primary mouse myotubes investigated the effects the effects of Numb knockdown on cell fusion, mitochondrial function and calcium transients. Results: Numb protein expression was reduced by ~70% (p < 0.01) at 24 as compared to 3 months of age. Numb was localized within muscle fibers as bands traversing fibers at regularly spaced intervals in close proximity to dihydropyridine receptors. The cKO of Numb and Numb-like reduced specific tetanic force by 36%, p < 0.01), altered mitochondrial spatial relationships to sarcomeric structures, increased Z-line spacing by 30% (p < 0.0001), perturbed sarcoplasmic reticulum organization and reduced mitochondrial volume by over 80% (p < 0.01). Only six genes were differentially expressed in cKO mice: Itga4, Sema7a, Irgm2, Vezf1, Mib1 and Tmem132a. Several lipid mediators derived from polyunsaturated fatty acid (PUFAs) through lipoxygenases were upregulated in Numb cKO skeletal muscle; 12-HEPE was increased by ~250% (p < 0.05) and 17,18-EpETE by ~240% (p < 0.05). In mouse primary myotubes, Numb knock-down reduced cell fusion (~20%, p < 0.01) and mitochondrial function and delayed the caffeine-induced rise in cytosolic calcium concentrations by more than 100% (p < 0.01). Conclusions: These findings implicate Numb as a critical factor in skeletal muscle structure and function which appear to be critical for calcium release; we therefore speculate Numb plays critical roles in excitation-contraction coupling, one of the putative targets of aged skeletal muscles. These findings provide new insights into the molecular underpinnings of the loss of muscle function observed with sarcopenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.