Ginseng Radix () is one of the most commonly used herbs worldwide for the treatment of inflammation-related diseases among others, supported by ancient historical records. Throughout this long history, the large-scale cultivation of ginseng created an increasing demand for long-term storage of the harvested plant material, accelerating the development of post-harvesting procedures. Dried white ginseng and processed (steamed) red ginseng are the products of the two most common traditional post-harvest processes. Although there are a significant number of reports on practice-based therapeutic applications of ginseng, science-based evidence is needed to support these uses. Using a reverse pharmacology approach in conjunction with high-throughput techniques and animal models may offer clear, simple paths for the elucidation of the mechanisms of activity of herbal medicines. Moreover, it could provide a new and more efficient method for the discovery of potential drug candidates. From this perspective, the different chemical compositions of white ginseng and red ginseng could very likely result in different interactions with signaling pathways of diverse biological responses. This paper provides an overview of white ginseng and red ginseng, mainly focusing on their chemical profile and immunomodulation activities. Synergistic effects of ginseng herbal drugs with combinations of other traditional herbal drugs or with synthetic drugs were reviewed. The use of the zebrafish model for bioactivity testing greatly improves the prospects for future ginseng research.
Melatonin is a neurohormone produced by the pineal gland of animals. Serotonin is a monoamine neurotransmitter and one of the precursors of melatonin biosynthesis. These two indoleamines have recently been reported to have widespread occurrence in many edible plants. Consuming foodstuffs containing melatonin and serotonin could raise their physiologic concentrations in blood and enhance human health. Literature concerning analytical methods suitable for determination of melatonin and serotonin in edible plants is limited, although several liquid chromatographic (LC) techniques have been used for their quantification. Liquid chromatography-mass spectrometry (LC-MS) methods combine selectivity, sensitivity, and high precision, and enable the simultaneous determination of melatonin and serotonin. This work reviews LC and LC-MS techniques used to determine melatonin and serotonin, and the available data on melatonin and serotonin levels in edible plants.
BackgroundThe structural conversions in ginsenosides induced by steaming or heating or acidic condition could improve red ginseng bioactivities significantly. In this paper, the chemical transformations of red American ginseng from fresh Panax quinquefolium L. under steaming were investigated, and the possible mechanisms were discussed.MethodsA method with reversed-phase high-performance liquid chromatography coupled with linear ion trap mass spectrometry (HPLC-MSn)-equipped electrospray ionization ion source was developed for structural analysis and quantitation of ginsenosides in dried and red American ginseng.ResultsIn total, 59 ginsenosides of protopanaxadiol, protopanaxatriol, oleanane, and ocotillol types were identified in American ginseng before and after steaming process by matching the molecular weight and/or comparing MSn fragmentation with that of standards and/or known published compounds, and some of them were determined to be disappeared or newly generated under different steaming time and temperature. The specific fragments of each aglycone-type ginsenosides were determined as well as aglycone hydrated and dehydrated ones. The mechanisms were deduced as hydrolysis, hydration, dehydration, and isomerization of neutral and acidic ginsenosides. Furthermore, the relative peak areas of detected compounds were calculated based on peak areas ratio.ConclusionThe multicomponent assessment of American ginseng was conducted by HPLC-MSn. The result is expected to provide possibility for holistic evaluation of the processing procedures of red American ginseng and a scientific basis for the usage of American ginseng in prescription.
Inflammatory bowel disease (IBD) is associated with acute and chronic inflammation of the gastrointestinal tract and has emerged to be a global disease. Spermidine, a natural polyamine, plays a critical role in maintaining cellular homeostasis. Herein, we investigated the impact and mechanism of spermidine on both dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzenesulfonic acid solution (TNBS)-induced colitis in mice. We found that spermidine exerted protective effects against acute colitis, evidenced by reduced disease activity index (DAI) and colonic inflammation, increased colonic length, and upregulated tight junction proteins in these two colitis models. Importantly, spermidine exerted significant therapeutic and preventive effects against DSS-induced colitis. Pre- and post-treatment with spermidine reduced the expression of proinflammatory cytokines, phosphorylation of (nuclear factor-κB) NF-κB and (mitogen-activated protein kinase) MAPK, and the activation of F4/80 macrophages and T cells in the colon. Furthermore, spermidine upregulated M2 macrophage markers, whereas it downregulated M1 markers in the inflamed colons. In parallel, spermidine reduced M1 pro-inflammatory markers and enhanced M2 anti-inflammatory genes in RAW264.7 cells. These results revealed that spermidine-ameliorated colitis might be through the regulation of M1/M2 macrophage polarization. In addition, spermidine treatment also alleviated LPS/TNF-α-induced inflammation in Caco-2 cells. Taken together, spermidine prevented and reversed colonic inflammation in colitis mice and might be a promising candidate for IBD intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.