This paper studies and introduces the successful case of gob-side entry retaining technology and the typical mining pressure law in Luan mining area, which is the main mining coal seam in Qinshui coalfield. Qinshui coalfield has an estimated coal reserve of 300 billion tons, accounting for 9.58% of the total national coal reserve in China, especially anthracite, chemical coal, and coking coal. The methods of field investigation, theoretical analysis, physical experiment, and industrial test are adopted. Through the field investigation, theoretical analysis, physical experiments, and industrial test, the following conclusions have been drawn in this study: (1) A thorough engineering geological investigation was conducted on the entry retaining along the gob side on noncoal pillar mining working face, which covers multiple periods of mining process including the roadway excavation period, primary mining period, primary mining stability period, and secondary mining influence period. A series of analysis and tests were conducted such as core sampling, rock mechanics property testing, borehole detection, and flexible formwork support evaluation, which laid a foundation for identifying the mining pressure law of gob-side entry retaining by using noncoal pillar mining. (2) The mining pressure law was studied through the collection of the field measurements taken from the entry retaining along the gob side on noncoal pillar mining working face. The keys to achieve the roadway surrounding rock stability through noncoal pillar mining are obtained. According to the study, the stability control of retained roadway surrounding rock mainly depends on the stability of top coal, coal side, and shoulder angle coal. (3) In this study, a roadway reinforcement scheme is proposed to improve the surrounding rock control technology for gob-side entry retaining by noncoal pillar mining, whose effectiveness has been verified by a series of industrial test. Therefore, the wide adoption of the noncoal pillar mining method in Number #3 coal mine can significantly relieve the predicament of coal pressing under a large number of buildings in Luan mining area, which provides insightful guidance to the coal-free pillar mining in the whole Luan mining area.
The high-precision 3D simulation model for geomechanics of a complex coal seam is the necessary premise for the research on intelligent shearer and unmanned mining. However, at present, a simulation model for geomechanics of a complex coal seam generally has the problems of simplifying complex geological structures and low accuracy for structures. In order to meet the needs of a coal seam simulation model in the mining process of an intelligent shearer, it is necessary to optimize the simplified model of a coal seam. Therefore, based on a 3D simplified simulation model constructed with discrete element technology, the complex coal seam application plug-in was compiled with the help of an Application Program Interface. Moreover, according to the geological characteristics, new attributes were added to the structures to complete the construction of the model of a complex coal seam. Finally, the model was verified with laboratory experiments. The results showed that the high-precision 3D simulation model for geomechanics of a complex coal seam effectively improved the accuracy of the modeling. The real-time transmission and the real-time sharing of multi-source data were realized by considering the 3D simulation model for geomechanics of a complex coal seam as the core. Additionally, the purpose of the real-time sensing of the coal cutting state was achieved in order to lay the foundation for the realization of unmanned mining.
The cutting head is the core working mechanism of the roadheader for coal-rock materials cutting. The efficient and high performance design of cutting head is the key to improve the road head digging and mining technology. In this paper, based on cutting head design theory and virtual prototype technology, we propose a computer-aided structure design and performance optimization method for cutting head. We compile the calculation code and realize the reading and storing of relevant data through Excel. In particular, to obtain more realistic cutting performance data of the cutting head, we construct a coupling model of cutting head cutting rock wall based on virtual prototype technology, and then establish a database matching structural parameters, working parameters, coal-rock properties and cutting performance through extensive simulations. Based on the method, we complete the design of EBZ220 roadheader cutting head. We show that our method can realize the fast and efficient design of cutting head, and the designed cutting head has good working performance.
Coal mine roadway deformation have a significant impact on coal mine production. Based on the Arduino microcontroller system and ultrasonic distance sensor, through temperature compensation and system fixes, designed a roadway deformation monitoring system which is high accuracy, low price and simple operation. Monitoring results through the LCD display, and SD card for data storage, the system achieved real-time monitoring of roadway deformation. The system was actually tested in coal mine, and achieved good monitoring results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.