Cardiovascular stent restenosis remains a major challenge in interventional treatment of cardiovascular occlusive disease. Although the changes in arterial mechanical environment due to stent implantation are the main causes of the initiation of restenosis and thrombosis, the mechanisms that cause this initiation are still not fully understood. In this article, we reviewed the studies on the issue of stent-induced alterations in arterial mechanical environment and discussed their roles in stent restenosis and late thrombosis from three aspects: (i) the interaction of the stent with host blood vessel, involve the response of vascular wall, the mechanism of mechanical signal transmission, the process of re-endothelialization and late thrombosis; (ii) the changes of hemodynamics in the lumen of the vascular segment and (iii) the changes of mechanical microenvironment within the vascular segment wall due to stent implantation. This review has summarized and analyzed current work in order to better solve the two main problems after stent implantation, namely in stent restenosis and late thrombosis, meanwhile propose the deficiencies of current work for future reference.
We have demonstrated that blood flow is essential for vascular network formation, specifically for CVP angiogenesis in zebrafish. A novel genetic and mechanical mechanism was discovered in which ERK5 facilitates the integration of blood flow with the downstream klf2a-nos2b signaling for CVP angiogenesis.
Macrophages are principal immune cells with a high plasticity in the human body that can differentiate under different conditions in the tumor microenvironment to adopt two polarized phenotypes with opposite functions. Therefore, converting macrophages from the immunosuppressive phenotype (M2) to the inflammatory phenotype (M1) is considered a promising therapeutic strategy for cancer. However, the molecular mechanisms underlying this conversion process have not yet been completely elucidated. In recent years, microRNAs (miRNAs or miRs) have been shown to play key roles in regulating macrophage polarization through their ability to modulate gene expression. In the present study, it was found that miR-382 expression was significantly downregulated in tumor-associated macrophages (TAMs) and M2-polarized macrophages in breast cancer.
In vitro
, macrophage polarization toward the M2 phenotype and M2-type cytokine release were inhibited by transfection with miR-382-overexpressing lentivirus. Similarly, the overexpression of miR-382 inhibited the ability of TAMs to promote the malignant behaviors of breast cancer cells. In addition, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) was identified as the downstream target of miR-382 and it was found that PGC-1α affected macrophage polarization by altering the metabolic status. The ectopic expression of PGC-1α restored the phenotype and cytokine secretion of miR-382-overexpressing macrophages. Furthermore, PGC-1α expression reversed the miR-382-induced changes in the metabolic state of TAMs and the effects of TAMs on breast cancer cells. Of note, the
in vivo
growth and metastasis of 4T1 cells were inhibited by miR-382-overexpressing TAMs. Taken together, the results of the present study suggest that miR-382 may alter the metabolic status of macrophages by targeting PGC-1α, thereby decreasing the proportion of TAMs with the M2 phenotype, and inhibiting the progression and metastasis of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.