The Warburg effect, characterized by increased glucose uptake and lactate production, is a well-known universal across cancer cells and other proliferating cells. PKM2, a splice isoform of the pyruvate kinase (PK) specifically expressed in these cells, serves as a major regulator of this metabolic reprogramming with an adjustable activity subjected to numerous allosteric effectors and posttranslational modifications. Here, we have identified a posttranslational modification on PKM2, GlcNAcylation, which specifically targets Thr and Ser, residues of the region encoded by the alternatively spliced exon 10 in cancer cells. We show that PKM2 GlcNAcylation is up-regulated in various types of human tumor cells and patient tumor tissues. The modification destabilized the active tetrameric PKM2, reduced PK activity, and led to nuclear translocation of PKM2. We also observed that the modification was associated with an increased glucose consumption and lactate production and enhanced level of lipid and DNA synthesis, indicating that GlcNAcylation promotes the Warburg effect. In vivo experiments showed that blocking PKM2GlcNAcylation attenuated tumor growth. Thus, we demonstrate that GlcNAcylation is a regulatory mechanism for PKM2 in cancer cells and serves as a bridge between PKM2 and metabolic reprogramming typical of the Warburg effect.
• CT characteristics and pathological classification of pGGO lung adenocarcinoma smaller than 3 cm • The optimal cut-off value for discriminating preinvasive from invasive lesions was 10.5 mm • Uniformity was significant difference between histological subtypes and correlated with lesion size • Tumour margin, tumour-lung interface and air bronchogram showed different between histological types • No significant difference in gender, lesion location and density with histological subtypes.
Silibinin, derived from the milk thistle plant (Silybum marianum), has anticancer and chemopreventive properties. Silibinin has been reported to inhibit the growth of various types of cancer cells. However, the mechanisms by which silibinin exerts an anticancer effect are poorly defined. The present study aimed to investigate whether silibinin-induced cell death might be attributed to autophagy and the underlying mechanisms in human MCF7 breast cancer cells. Our results showed that silibinin-induced cell death was greatly abrogated by two specific autophagy inhibitors, 3-methyladenine (3-MA) and bafilomycin-A1 (Baf-A1). In addition, silibinin triggered the conversion of light chain 3 (LC3)-I to LC3-II, promoted the upregulation of Atg12-Atg5 formation, increased Beclin-1 expression, and decreased the Bcl-2 level. Moreover, we noted elevated reactive oxygen species (ROS) generation, concomitant with the dissipation of mitochondrial transmembrane potential (ΔΨm) and a drastic decline in ATP levels following silibinin treatment, which were effectively prevented by the antioxidants, N-acetylcysteine and ascorbic acid. Silibinin stimulated the expression of Bcl-2 adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), a pro-death Bcl-2 family member, and silencing of BNIP3 greatly inhibited silibinin-induced cell death, decreased ROS production, and sustained ΔΨm and ATP levels. Taken together, these findings revealed that silibinin induced autophagic cell death through ROS-dependent mitochondrial dysfunction and ATP depletion involving BNIP3 in MCF7 cells.
Ischemic injury in rodent models reliably leads to the activation of microglia, which might play a detrimental role in neuronal survival. Our preliminary studies suggest that nicotine plays a potential role in decreasing the numbers of cultured microglia in vitro. In the present study, we found treatment with nicotine 2, 6, and 12 h after ischemia for 7 days significantly increased the survival of CA1 pyramidal neurons in ischemia/reperfusion rats. This effect was accompanied by a significant reduction in the increase of microglia rather than astrocytes, as well as a significant reduction of enhanced expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) in CA1 induced by ischemia/reperfusion. Nicotine inhibits microglial proliferation in primary cultures with and without the stimulation of granulocyte-macrophage colony-stimulating factor (GM-CSF). Pre-treatment with α-bungarotoxin, a selective α7 nicotinic acetylcholine receptor (α7 nAChR) antagonist, could prevent the inhibitory effects of nicotine on cultured microglial proliferation suggesting that nicotine inhibits the microglial proliferation in an α7 nAChR-dependent fashion. Our results suggest that nicotine inhibits the inflammation mediated by microglia via α7 nAChR and is neuroprotective against ischemic stroke, even when administered 12 h after the insult. α7 nAChR agonists may have uses as anti-ischemic compounds in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.