Representative tertiary amines were linked to the 8-cyano-7-hydroxyquinolinyl (CyHQ) photoremovable protecting group (PPG) to create photoactivatable forms suitable for use in studying cell physiology. The photoactivation of tamoxifen and 4-hydroxytamoxifen, which can be used to activate Cre recombinase and CRISPR-Cas9 gene editing, demonstrated that highly efficient release of bioactive molecules could be achieved through one- and two-photon excitation (1PE and 2PE). CyHQ-protected anilines underwent a photoaza-Claisen rearrangement instead of releasing amines. Time-resolved spectroscopic studies revealed that photorelease of the tertiary amines was extremely fast, occurring from a singlet excited state of CyHQ on the 70 ps time scale.
The electronically excited state and luminescence property of metal−organic framework MOF-5 were investigated using relativistic density functional theory (DFT) and timedependent DFT (TDDFT). The geometry, IR spectra, and UV− vis spectra of MOF-5 in the ground state were calculated using relativistic DFT, leading to good agreement between the experimental and theoretical results. The frontier molecular orbitals and electronic configuration indicated that the luminescence mechanism in MOF-5 follows ligand-to-ligand charge transfer (LLCT), namely, π* → π, rather than emission with the ZnO quantum dot (QD) proposed by Bordiga et al. The geometry and IR spectra of MOF-5 in the electronically excited state have been calculated using the relativistic TDDFT and compared with those for the ground state. The comparison reveals that the Zn 4 O 13 QD is rigid, whereas the ligands BDC 2− are nonrigid. In addition, the calculated emission band of MOF-5 is in good agreement with the experimental result and is similar to that of the ligand H 2 BDC. The combined results confirmed that the luminescence mechanism for MOF-5 should be LLCT with little mixing of the ligandto-metal charge transfer. The reason for the MOF-5 luminescence is explained by the excellent coplanarity between the sixmembered ring consisting of zinc, oxygen, carbon, and the benzene ring.
Photochemical reactions at lower energy than the absorption window are currently achieved by multi-photon processes, including two-photon absorption and photon upconversion, which have limited energy utilization efficiency. Here, we report a one-photon strategy based on triplet−triplet energy transfer (TTET) between a photosensitizer and a photocleavable molecule to achieve photolysis at low energy. To verify this concept, we chose platinum(II) tetraphenyltetrabenzoporphyrin (PtTPBP) as the photosensitizer and synthesized a boron-dipyrromethene (BODIPY)-based prodrug as the photocleavable molecule. Photolysis of the prodrug is achieved by TTET upon excitation of PtTPBP at 625 nm with a photolysis quantum yield of 2.8%. Another demonstration shows an unexpected higher photolysis quantum yield than the direct excitation at 530 nm. This strategy opens a new path for achieving photolysis at long wavelengths, benefiting the applications in biological studies, photopharmacology, and photoresponsive drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.