We explored the application of two-dimensional covalent organic frameworks (2D COFs) in single molecule DNA analysis. Two ultrathin COF nanosheets were exfoliated with pore sizes of 1.1 nm (COF-1.1) and 1.3 nm (COF-1.3) and covered closely on a quartz nanopipette with an orifice of 20 ± 5 nm. COF nanopores exhibited high size selectivity for fluorescent dyes and DNA molecules. The transport of long (calf thymus DNA) and short (DNA-80) DNA molecules through the COF nanopores was studied. Because of the strong interaction between DNA bases and the organic backbones of COFs, the DNA-80 was transported through the COF-1.1 nanopore at a speed of 270 μs/base, which is the slowest speed ever observed compared with 2D inorganic nanomaterials. This study shows that the COF nanosheet can work individually as a nanopore monomer with controllable pore size like its biological counterparts.
Probing the orientation and oxygenation state of single molecules (SMs) is of great importance for understanding the advanced structure of individual molecules. Here, we manipulate molecules transporting through the hot spot of a sub-10 nm conical gold nanopore and acquire the multidimensional structural information of the SMs by surface enhanced Raman scattering (SERS) detection. The sub-10 nm size and conical shape of the plasmonic nanopore guarantee its high detection sensitivity. SERS spectra show a high correlation with the orientations of small-sized single rhodamine 6G (R6G) during transport. Meanwhile, SERS spectra of a single hemoglobin (Hb) reveal both the vertical/parallel orientations of the porphyrin ring and oxygenated/deoxygenated states of Hb. The present study provides a new strategy for bridging the primary sequence and the advanced structure of SMs.
High ion selectivity and permeability, as two contradictory aspects for the membrane design, highly hamper the development of osmotic energy harvesting technologies. Metal–organic frameworks (MOFs) with ultra‐small and high‐density pores and functional surface groups show great promise in tackling these problems. Here, we propose a facile and mild cathodic deposition method to directly prepare crack‐free porphyrin MOF membranes on a porous anodic aluminum oxide for osmotic energy harvesting. The abundant carboxyl groups of the functionalized porphyrin ligands together with the nanoporous structure endows the MOF membrane with high cation selectivity and ion permeability, thus a large output power density of 6.26 W m−2 is achieved. The photoactive porphyrin ligands further lead to an improvement of the power density to 7.74 W m−2 upon light irradiation. This work provides a promising strategy for the design of high‐performance osmotic energy harvesting systems.
Membrane-based ion separation is environmentally friendly, energy-efficient, and easy to integrate, being widely used in water desalination and purification systems. With the existing separation technologies, it is yet difficult to achieve real time, in situ, and reversible control of the separation process. Here, we design and fabricate a Prussian blue (PB) coordination polymer based membrane with uniform and electrochemically size-tunable subnanopores. The ion separation can be significantly and reversibly modulated through the electrochemical conversion between PB and Prussian white (PW). The permeation rates of small hydrated metal ions (Cs + and K + ) obviously increase upon switching from PB to PW, while the permeation rates of large hydrated metal ions (Li + , Na + , Mg 2+ , and La 3+ ) remain constant. The membrane selectivity of small hydrated ions to large hydrated ions can be increased by more than 2 times during the electrochemical switch, which could be assigned to the slightly larger crystal size (e.g., pore window size) of PW than PB. The present approach provides a new strategy for constructing tunable seawater desalination and ion extraction systems.
Harvesting the low-grade (<100°C) solar thermal energy with ionic heat-to-electricity conversion shows great promise but low efficiencies due to the challenges encountered in regulating ionic thermophoretic mobilities. Here, we used nanochannels to regulate thermal-driven ion transport properties and described a solar thermoelectric nanofluidic device (STEND). The localized heat generated by the broadband plasmonic absorption of the gold nanostructure is focused at the orifice of the nanochannel, which builds up a large temperature gradient inside the nanochannel. The following thermal-driven ionic charge separation was enhanced by the ion-selective nanochannel, resulting in large thermal membrane potential (TMP). The Seebeck coefficient and the TMP reached 0.76 mV/K and 23 mV, respectively, in an aqueous KCl solution. The performance of the device was improved further by the enhancement of electrostatic interaction between the ions and the nanochannnels, the increase of the membrane thermal resistance, and the decoupling of the ion concentration polarization (ICP) regions. This study supports the understanding of thermal-driven ion transport at nanoscale and provides a new strategy for harvesting solar thermal energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.