Ischemia-reperfusion (I/R) injury is injury caused by a limited blood supply and subsequent blood supply recovery during liver transplantation. Serious ischemia-reperfusion injury is the main cause of transplant failure. Hepatic I/R is characterized by tissue hypoxia due to a limited blood supply and reperfusion inducing oxidative stress and an immune response. Studies have confirmed that Kupffer cells (KCs), resident macrophages in the liver, play a key role in aseptic inflammation induced by I/R. In liver macrophage polarization, M1 macrophages activated by interferon-γ (IFN-γ) and lipopolysaccharide (LPS) exert a pro-inflammatory effect and release a variety of inflammatory cytokines. M2 macrophages activated by IL-4 have an anti-inflammatory response. M1-type KCs are the dominant players in I/R as they secrete various pro-inflammatory cytokines that exacerbate the injury and recruit other types of immune cells via the circulation. In contrast, M2-type KCs can ameliorate I/R through unregulated anti-inflammatory factors. A new notion has been proposed that KC apoptosis may influence I/R in yet another manner as well. Management of KCs is expected to help improve I/R. This review summarizes the effects of hepatic macrophage polarization and apoptosis on liver I/R.
Submucosal tunneling endoscopic resection appears to be a feasible, safe, and effective procedure for treatment of small (≤3 cm) upper GI SETs originating from the MP layer.
Background
Artificial intelligence (AI) assistance has been considered as a promising way to improve colonoscopic polyp detection, but there are limited prospective studies on real‐time use of AI systems.
Methods
We conducted a prospective, multicenter, randomized controlled trial of patients undergoing colonoscopy at six centers. Eligible patients were randomly assigned to conventional colonoscopy (control group) or AI‐assisted colonoscopy (AI group). AI assistance was our newly developed AI system for real‐time colonoscopic polyp detection. Primary outcome is polyp detection rate (PDR). Secondary outcomes include polyps per positive patient (PPP), polyps per colonoscopy (PPC), and non‐first polyps per colonoscopy (PPC‐Plus).
Results
A total of 2352 patients were included in the final analysis. Compared with the control, AI group did not show significant increment in PDR (38.8% vs. 36.2%, p = 0.183), but its PPC‐Plus was significantly higher (0.5 vs. 0.4, p < 0.05). In addition, AI group detected more diminutive polyps (76.0% vs. 68.8%, p < 0.01) and flat polyps (5.9% vs. 3.3%, p < 0.05). The effects varied somewhat between centers. In further logistic regression analysis, AI assistance independently contributed to the increment of PDR, and the impact was more pronounced for male endoscopists, shorter insertion time but longer withdrawal time, and elderly patients with larger waist circumference.
Conclusion
The intervention of AI plays a limited role in overall polyp detection, but increases detection of easily missed polyps; ChiCTR.org.cn number, ChiCTR1800015607.
eFTR with defect closure with clips and an endoloop appears to be a safe and effective technique for the treatment of patients with gastric SETs originating from the MP, especially for those with extraluminal growth or adhesions to the MP.
Epidemiological studies have suggested a link between vitamin D deficiency and increased risk for nonalcoholic fatty liver disease (NAFLD); however, the underlying mechanisms have remained unclear. Here, using both clinical samples and experimental rodent models along with several biochemical approaches, we explored the specific effects and mechanisms of vitamin D deficiency in NAFLD pathology. Serum vitamin D levels were significantly lower in individuals with NAFLD and in high-fat diet (HFD)-fed mice than in healthy controls and chow-fed mice, respectively. Vitamin D supplementation ameliorated HFD-induced hepatic steatosis and insulin resistance in mice. Hepatic expression of vitamin D receptor (VDR) was up-regulated in three models of NAFLD, including HFD-fed mice, methionine/choline-deficient diet (MCD)-fed mice, and genetically obese (ob/ob) mice. Liver-specific VDR deletion significantly exacerbated HFD- or MCD-induced hepatic steatosis and insulin resistance and also diminished the protective effect of vitamin D supplementation on NAFLD. Mechanistic experiments revealed that VDR interacted with hepatocyte nuclear factor 4 α (HNF4α) and that overexpression of HNF4α improved HFD-induced NAFLD and metabolic abnormalities in liver-specific VDR-knockout mice. These results suggest that vitamin D ameliorates NAFLD and metabolic abnormalities by activating hepatic VDR, leading to its interaction with HNF4α. Our findings highlight a potential value of using vitamin D for preventing and managing NAFLD by targeting VDR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.