Six new cembrane-type diterpenoids (1-6) were isolated from two species of Chandonanthus: Chandonanones A, B, and D-F (1, 2, and 4-6) were isolated from C. hirtellus, and chandonanones B, C, E, and F (2, 3, 5, and 6) from C. birmensis. Five known diterpenoids, (8E)-4α-acetoxy-12α,13α-epoxycembra-1(15),8-diene (7), isochandonanthone (8), chandonanthone (9), anadensin (10), and 2,10,14-triacetoxy-7,8,18,19-diepoxydolabell-3(E)-ene (11), were also obtained. The structures of the new metabolites were established by analyses of their spectroscopic data (1D NMR, 2D NMR, HRESIMS, and IR). The absolute configurations of compounds 1 and 2 were unequivocally confirmed using single-crystal X-ray diffraction analysis with Cu Kα radiation. Cytotoxicity tests of the isolated diterpenoids against seven cancer cell lines (DU145, PC3, A549, PC12, NCI-H292, NCI-H1299, and A172) revealed that some of the diterpenoids had weak activity.
A chemical study of the ethyl acetate (EtOAc) extract from the deep-sea-derived fungus Penicillium thomii YPGA3 led to the isolation of a new austalide meroterpenoid (1) and seven known analogues (2−8), two new labdane-type diterpenoids (9 and 10) and a known derivative (11). The structures of new compounds 1, 9, and 10 were determined by comprehensive analyses via nuclear magnetic resonance (NMR) and mass spectroscopy (MS) data. The absolute configurations of 1, 9, and 10 were determined by comparisons of experimental electronic circular dichroism (ECD) with the calculated ECD spectra. Compound 1 represented the third example of austalides bearing a hydroxyl group at C-5 instead of the conserved methoxy in other known analogues. To our knowledge, diterpenoids belonging to the labdane-type were discovered from species of Penicillium for the first time. Compound 1 showed cytotoxicity toward MDA-MB-468 cells with an IC50 value of 38.9 μM. Compounds 2 and 11 exhibited inhibition against α-glucosidase with IC50 values of 910 and 525 μM, respectively, being more active than the positive control acarbose (1.33 mM).
Pulmonary arterial hypertension (PAH) is an extremely malignant cardiovascular disease which mainly involves the uncontrollable proliferation of the pulmonary arterial smooth muscular cells (PASMCs). Recent studies have confirmed that mitochondria play an important role in the pathogenesis of pulmonary hypertension through sensing cell hypoxia, energy metabolism conversion, and apoptosis. As a mitochondrial membrane protein, TUFM has been regarded to be related to mitochondrial autophagy (mitophagy), apoptosis, and oxidative stress. Considering these factors are closely associated with the pathogenesis of PAH, we hypothesize that TUFM might play a role in the development of PAH. Our preliminary examination has showed TUFM mainly expressed in the PASMCs, and the subsequent test indicated an increased TUFM expression in the SMCs of pulmonary arteriole in monocrotaline- (MCT-) induced PAH rat model compared with the normal rat. The TUFM knockdown (Sh-TUFM) or overexpressed (OE-TUFM) rats were used to establish PAH by treating with MCT. A notable lower pulmonary arterial systolic pressure together with slightly morphological changes of pulmonary arteriole was observed in the Sh-TUFM group compared with the single MCT-induced PAH group. Increased levels of P62 and Bax and reduced LC3II/I, BECN1, and Bcl2 were detected in the Sh-TUFM group, while the expressions of these proteins in the OE-TUFM group were contrast to the results of the Sh-TUFM group. To elucidate the possible mechanism underlying biological effect of TUFM in PAH, PASMCs were treated with silence or overexpression of TUFM and then exposed to hypoxia condition. An obviously high levels of P62 and Bax along with a decreased LC3 II/I, BECN1, ULK1, Atg12, Atg13, and Bcl2 levels were noticed in cells with silence of TUFM. Moreover, the phosphorylated AMPK and mTOR which was well known in mitophagy modulating vary by the alternation of TUFM. These observations suggested that TUFM silence inhibits the development of MCT-induced PAH via AMPK/mTOR pathway.
In the current recycling process of reclaimed asphalt pavement (RAP), due to the serious damage of aggregate gradation and the large amount of aged asphalt still wrapped around the surface of the treated aggregate, the low recycling rate and poor performance of the recycled asphalt mixture are the major problems of RAP. In view of the shortcomings of RAP recycling technology, it is urgent to research new treatment methods and design specialized asphalt-stripping equipment to solve the existing problems. In this paper, based on theoretical analysis and EDEM discrete element simulation, a principle prototype for efficient micro-damage fine stripping of asphalt on the RAP surface is developed and tested. The results demonstrate that the principle prototype has a satisfactory asphalt-stripping effect and achieves fine stripping of aged asphalt on the surface of aggregate without large-scale crushing. This principle prototype has significant engineering application values, which provides design solutions and data support for further equipment development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.