The existing heat dissipation research on double disk magnetic couplers ignores the coupling influence of electromagnetic temperature–stress and other multiphysics fields, and the error between the calculation and analysis results and the measured values is large. Therefore, a multi-parameter optimization method for heat dissipation structures of double disk magnetic couplers based on orthogonal experimental design is proposed. Based on the double disk magnetic coupler model, a three-dimensional finite element model based on fluid–solid–heat coupling is established, with the axial air gap length, input motor speed, the thickness of the permanent magnet in the magnetizing direction, the thickness of the copper plate, the number of fins of the heat dissipation plate and the length of the fins of the heat dissipation plate as design variables. Six-factor and three-level simulation experiments are designed with the minimum temperature of the heat dissipation plate as the objective function, and additionally, orthogonal experiments were designed according to the actual working conditions by selecting the optimal combination of parameters and modifying the model to perform physical tests. The results show that the variables that have the most significant impact on heat dissipation performance from high to low are as follows: axial air gap length, input motor speed, the length of the fins of the heat dissipation plate, the thickness of the permanent magnet in the magnetizing direction, the number of fins of the heat dissipation plate and the thickness of the copper plate. The increase in axial air gap length can effectively reduce the temperature rise, and the maximum decrease can reach 9.76%. Under the same conditions, the input motor speeds are set to 300 r/min, 400 r/min, 500 r/min, 600 r/min and 700 r/min, respectively, and the simulation results are in good agreement with the physical test results, with a maximum error of 4.8%. The error between the simulation result and the physical test result is only 1.9% under the optimal combination of parameters obtained by the orthogonal experiment, which verifies the correctness of the optimization model. In conclusion, the study is of reference significance for the parameter optimization of the heat dissipation structure of the double disk magnetic coupler.
A new inhibition method was proposed for the problem of harmonic of radial electromagnetic force during the operation of the composite magnetic coupler. In order to suppress its radial electromagnetic force, a radial permanent magnet rotor eccentricity method is proposed, and a three-dimensional finite element model is established. Based on the Maxwell tensor method, the radial electromagnetic force of the composite magnetic coupler is analysed, and the mathematical expression of its radial electromagnetic force is established, Maxwell stress tensor was used to analyse the radial electromagnetic force in a composite magnetic coupler and to establish the mathematical equation for the radial electromagnetic force. In order to suppress the radial electromagnetic force, a method based on rotor eccentricity in a radial permanent magnet was proposed. A prototype of a composite magnetic coupler with a rated power of 5 kW was designed to test its output torque under load. The results showed that the simulated curve was consistent with the tested curve, with a maximum numerical error of 8.9%. The tested values of the output torque before and after eccentricity were compared, and the results showed that the output torque remained basically unchanged after the eccentric structure was adopted and that the torque pulsation was significantly reduced.
At present, the vibrational coupling mechanism of the rotor system with a double-disk magnetic coupler has not been sufficiently studied. Based on the mechanical impedance theory, the patterns of structural mass and stiffness distribution were quantitatively described, to establish the model for the vibrational coupling mechanism. Methods were proposed to determine the vibrational coupling point and to simulate the transient response to the interacting excitations, so as to analyze the potential vibrational coupling point and the dynamic response characteristics. Then, the Campbell diagram of the shared support-dual rotor system was combined with the mechanical impedance characteristics of the shared support. As a result, it was found that although the base vibration of the shared support was significantly amplified, the single-axis trajectory showed that both the output and input rotors were synchronized with the forward vortex motion, with almost no coupling between them. A double-disk magnetic coupler test bench with a rated power of 55 kW was designed to verify the experiments. The results showed that the vibration displacement occurred in a periodic variation pattern. Moreover, the maximum errors between the theoretical, simulated, and experimental values of the vibration displacement at different input speeds were less than 5%. The experiments verified the validity of the model for the vibrational coupling mechanism and the simulation of the transient response to the interacting excitation. The results of the study could be used as a basis for calculating the vibration of the rotor system with a double-disk magnetic coupler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.