Purpose The thermodynamic energy of redox reactions affects the distribution of microbial redox reactions and cyclic transformation of elements in various anaerobic ecosystems. The principle of thermodynamics is of dramatic significance in understanding the energetics of metabolic processes, the biogeochemical behavior of microorganisms, and mass and energy cycles. The purpose of this paper is to relate the distribution of the coupling reactions between C, N, Fe, and S, the most important elements involved in microbially mediated redox reactions, with their thermodynamic feasibility to provide theoretical foundation of their occurrence. Results and discussion Anaerobic microorganisms catalyze diverse redox reactions in anoxic environments, driving elemental biogeochemical cycles on the earth. They capture energy from catalyzing these redox reactions in order to support life. The thermodynamic feasibility of these microbe-driven redox reactions is controlled by their energy yields which depend on environmental conditions. Anaerobic microorganisms can oxidize organic carbon with diverse inorganic compounds including nitrate/nitrite, ferric iron, and sulfate as electron acceptors in various anoxic environments which is referred to anaerobic respiration of organic matter; reversely, inorganic carbon can be reduced to synthesize cell material with ferrous iron and sulfide as an alternative electron donor by phototrophs under different sets of circumstances. Nitrate/nitrate can be microbically reduced by inorganic compounds such as ferrous iron and sulfide under some specific situations; the coupling of anaerobic anammox oxidation and reduction of nitrite (anammox), ferric iron (feammox), and sulfate (suramox) driven by anaerobes occurs in other particular systems. Conclusions and perspectives Although there are increasing researches investigating the anaerobe-driven coupling of pairs of elements such as C-N, C-Fe, C-S, N-Fe, N-S, and Fe-S, much more intricate situations associating the coupling of multiple elements are still not comprehensively understood. A great many reactions which are thermodynamically feasible have not yet been identified in natural environments or laboratories. Further work focusing on the metabolic pathways from a genetic and enzymatic perspective and the factors controlling the feasibility of the reactions by using updated technical tools and methods is required.
Purpose: Extracellular Fe(III) reduction plays an important role in a variety of biogeochemical processes. Several mechanisms for microbial Fe(III) reduction in pH-neutral environments have been proposed, but pathways of microbial Fe(III) reduction within alkaline conditions have not been clearly identified. Alkaline soils are vastly distributed; thus, a better understanding of microbial Fe(III) reduction under alkaline conditions is of significance. The purpose of this study is to explore the dominant mechanism of bacterial iron reduction in alkaline environments. Materials and methods: We used antraquinone-2,6-disulfonate (AQDS) as a representative of quinone moities of humic substances and elemental sulfur and sulfate as sulfur species to investigate the potential role of humic substances and sulfur species in mediating microbial Fe(III) reduction in alkaline environments. We carried out thermodynamic calculations to predict the ability of bacteria to reduce Fe(III) (oxyhydr)oxides under alkaline conditions and the ability of AQDS and sulfur species to serve as electron acceptors for microbial anaerobic respiration in an assumed alkaline soil environments. A series of incubation experiments with two model dissimilatory metal reducing bacteria, Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA as well as mixed bacteria enriched from a soil were performed to confirm the contribution of AQDS and sulfur species to Fe(III) reduction under alkaline conditions. Results and discussion: Based on thermodynamic calculations, we predicted that, under alkaline conditions, the enzymatic reduction of Fe(III) (oxyhydr)oxides would be thermodynamically feasible but very weak. In our incubation experiments, the reduction of ferrihydrite by anaerobic cultures of Shewanella oneidensis MR-1, Geobacter sulfurreducens PCA or microbes enriched from a soil was significantly increased in the presence of S0 or AQDS. Notably, AQDS contributed more to promoting Fe(III) reduction as a soluble electron shuttle than S0 did under the alkaline conditions probably because of different mechanisms of microbial utilization of AQDS and S0. Conclusions: These results suggest that microbial reduction of Fe(III) (oxyhydr)oxides under alkaline conditions may proceed via a pathway mediated by electron shuttles such as AQDS and S0. Considering the high ability of electron shuttling and vast distribution of humic substances, we suggest that humic substance-mediated Fe(III) reduction may potentially be the dominant mechanism for Fe(III) reduction in alkaline environments
Biogeochemical interactions of iron and sulfur drive their cycles in many environments, which makes understanding the mechanism of sulfur redox cycling dependent abiotic iron(III) reduction by sulfate-reducing bacteria (SRB) particularly important. Here, we present a newly isolated Desulfitobacterium hafniense strain DH with the potential of reducing sulfate, sulfite, thiosulfate, and elemental sulfur from a paddy soil. Strain DH cannot enzymatically reduce ferrihydrite, but it can abiotically reduce ferrihydrite through extracellular electron transfer with biogenic sulfide or other sulfur compounds acting as electron shuttles. Sulfite, elemental sulfur, and thiosulfate, the oxidation products of sulfide, complete the sulfur cycle between ferrihydrite and strain DH. The presence of strain DH at the ferrihydrite surface results in mineral dissolution and secondary mineralization. Proteomic analysis revealed that the expression level of sulfur reduction functional protein DsrC and a thiosulfate reductase in the sulfide/ferrihydrite amendment group was 1.79 and 1.99 times higher, respectively, than in the sulfide-only amendment setup. On the other hand, the protein expression level of DsrAB showed no significant variation. A number of carbon metabolism enzymes, including succinate dehydrogenase (2.46 fold), fumarate reductase (2.64 fold), acetyl-coenzyme A synthetase (2.64 fold) and phosphoenolpyruvate synthase (3.4 fold), were up-regulated significantly due to the stimulation of released ferrous ion that was generated during the sulfur redox cycling dependent abiotic ferrihydrite reduction process. This result confirms the important role of DsrC and thiosulfate reductase in sulfur redox cycling dependent abiotic ferrihydrite reduction. Sulfur redox cycling dependent abiotic iron oxide reduction mediated by SRB might be a widespread process in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.