Andrographolide derivatives or analogs exhibit potent anti-inflammatory effects in several disease models through NF-κB activity. In this study, we synthesized different andrographolide derivatives and investigated their effects on the toll-like receptor (TLR)-induced production of pro-inflammatory cytokines. Among these compounds, 3b, 5a, and 5b inhibited both TNF-α/NF-κB and TLR4/NF-κB signaling pathways. Treatment with compounds 3b, 5a, and 5b and their structural analogs, 3a and 6b, suppressed the expression of pro-inflammatory cytokines upon the activation of TLR3 and TLR4 ligands. Compounds 3b and 5a, but not 3a, 5b, or 6b, inhibited the nuclear translocation of the NF-κB p65 subunit. Treatment with compounds 3b, 5a, 3a, 5b, and 6b attenuated the phosphorylation of p65 and IκBα. Compounds 6b suppressed the expression of the NF-κB p65 subunit. However, these compounds, except for 5b, did not affect the TLR9-induced NF-κB-independent production of the pro-inflammatory cytokines, TNF-α, and IFN-β. Compound 3b potentially protected mice from LPS-induced acute pulmonary inflammation through the inhibition of p65 phosphorylation and the decrease of serum pro-inflammatory cytokines and chemokine. Our study revealed a functional structure–activity relationship between andrographolide derivatives and innate immunity. We identified compound 3b as a potent immune suppressive agent with the potential to protect acute pulmonary infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.