published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
Capacitive deionization (CDI) is a promising technology for desalination due to its advantages of low driven energy and environmental friendliness. However, the ion removal capacity (IRC) of CDI is insufficient for practical application because such a capacity is limited by the available surface area of the carbon electrode for ion absorption. Thus, the development of a novel desalination technology with high IRC and low cost is vital. Here, a membrane-free hybrid capacitive deionization system (HCDI) with hollow carbon@MnO 2 (HC@MnO 2 ) to capture sodium via redox reaction and hollow carbon sphere with net positive surface charges (PHC) for chloride adsorption is introduced. The as-obtained HC@MnO 2 with unique structure and high conductivity can improve the utilization of MnO 2 pseudocapacitive electrodes. Meanwhile, the PHC can selectively adsorb Cl − and prevent the adsorption of Na + due to electrostatic repulsion. As expected, the membrane-free HCDI system demonstrates excellent desalination performance. The system's IRC and maximum removal rate are 30.7 mg g −1 and 7.8 mg g −1 min −1 , respectively. Moreover, the proposed system has a low cost because of the absence of expensive ion exchange membranes (IEM), which is suitable for practical application. The excellent performance of this HCDI makes it a promising desalination technology for future use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.