Optimal creation of photon Fock states is of importance for quantum information processing and state engineering. Here an efficient strategy is presented for speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving. A transmon qubit is dispersively coupled to a quantized electrical field. We address a Λ-configuration interaction between the composite system and classical drivings. Based on two Gaussian-shaped drivings, a single-photon Fock state can be generated adiabatically. Instead of adding an auxiliary counterdiabatic driving, our concern is to modify these two Rabi drivings in the framework of shortcut to adiabaticity. Thus an accelerated operation with high efficiency can be realized in a much shorter time. Compared with the adiabatic counterpart, the shortcut-based operation is significantly insusceptible to decoherence effects. The scheme could offer a promising way to deterministically prepare photon Fock states with superconducting quantum circuits.
Non-Hermitian dissipation dynamics, capable of turning the conventionally detrimental decoherence effects to useful resources for state engineering, is highly attractive to quantum information processing. In this work, an effective scheme is developed for implementing fast population transfer with a superconducting qutrit via the non-Hermitian shortcut to adiabaticity (STA). We first deal with a Λ-configuration interaction between the qutrit and microwave drivings, in which the dephasing-assisted qubit state inversion requiring an overlarge dephasing rate is constructed non-adiabatically. After introducing a feasible ancillary driving that directly acts upon the qubit states, the target state transfer can be well realized but with an accessible qubit dephasing rate. Moreover, a high fidelity could be numerically obtained in the considered system. The strategy could provide a new route towards the non-Hermitian shortcut operations on superconducting quantum circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.