It is experimentally demonstrated that the electric field drives the grainboundary (GB) migration in ceramics, but this has not been interpreted mechanistically. This work develops a phase field model to study the GB migration in alumina (Al 2 O 3 ) and validate through the comparison with previous experiments. Results show that the GBs move to the small grain domain. Under an electric field in the positive bias direction, GB migration is enhanced, whereas the migration to the small grain domain is inhibited under the electric field in the negative bias direction. The enhancement or inhibition effect becomes more pronounced with increasing the electric field. The high negative bias induces decrease in the GB migration velocity even with the migration direction altering. It is revealed that GB migrations are dominated by the competitive effect between the curvature and electric field driving forces, and an analytical expression of the critical electric field is derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.