Autonomous vehicles have become a topic of interest in recent times due to the rapid advancement of automobile and computer vision technology. The ability of autonomous vehicles to drive safely and efficiently relies heavily on their ability to accurately recognize traffic signs. This makes traffic sign recognition a critical component of autonomous driving systems. To address this challenge, researchers have been exploring various approaches to traffic sign recognition, including machine learning and deep learning. Despite these efforts, the variability of traffic signs across different geographical regions, complex background scenes, and changes in illumination still poses significant challenges to the development of reliable traffic sign recognition systems. This paper provides a comprehensive overview of the latest advancements in the field of traffic sign recognition, covering various key areas, including preprocessing techniques, feature extraction methods, classification techniques, datasets, and performance evaluation. The paper also delves into the commonly used traffic sign recognition datasets and their associated challenges. Additionally, this paper sheds light on the limitations and future research prospects of traffic sign recognition.
With the growing trend in autonomous vehicles, accurate recognition of traffic signs has become crucial. This research focuses on the use of convolutional neural networks for traffic sign classification, specifically utilizing pre-trained models of ResNet50, DenseNet121, and VGG16. To enhance the accuracy and robustness of the model, the authors implement an ensemble learning technique with majority voting, to combine the predictions of multiple CNNs. The proposed approach was evaluated on three different traffic sign datasets: the German Traffic Sign Recognition Benchmark (GTSRB), the Belgium Traffic Sign Dataset (BTSD), and the Chinese Traffic Sign Database (TSRD). The results demonstrate the efficacy of the ensemble approach, with recognition rates of 98.84% on the GTSRB dataset, 98.33% on the BTSD dataset, and 94.55% on the TSRD dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.