The real-time and accuracy of motion classification plays an essential role for the elderly or frail people in daily activities. This study aims to determine the optimal feature extraction and classification method for the activities of daily living (ADL). In the experiment, we collected surface electromyography (sEMG) signals from thigh semitendinosus, lateral thigh muscle, and calf gastrocnemius of the lower limbs to classify horizontal walking, crossing obstacles, standing up, going down the stairs, and going up the stairs. Firstly, we analyzed 11 feature extraction methods, including time domain, frequency domain, time-frequency domain, and entropy. Additionally, a feature evaluation method was proposed, and the separability of 11 feature extraction algorithms was calculated. Then, combined with 11 feature algorithms, the classification accuracy and time of 55 classification methods were calculated. The results showed that the Gaussian Kernel Linear Discriminant Analysis (GK-LDA) with WAMP had the highest classification accuracy rate (96%), and the calculation time was below 80 ms. In this paper, the quantitative comparative analysis of feature extraction and classification methods was a benefit to the application for the wearable sEMG sensor system in ADL.
Protein phosphorylation is one of the most critical post-translational modifications of proteins in eukaryotes, which is essential for a variety of biological processes. Plenty of attempts have been made to improve the performance of computational predictors for phosphorylation site prediction. However, most of them are based on extra domain knowledge or feature selection. In this article, we present a novel deep learning-based predictor, named TransPhos, which is constructed using a transformer encoder and densely connected convolutional neural network blocks, for predicting phosphorylation sites. Data experiments are conducted on the datasets of PPA (version 3.0) and Phospho. ELM. The experimental results show that our TransPhos performs better than several deep learning models, including Convolutional Neural Networks (CNN), Long-term and short-term memory networks (LSTM), Recurrent neural networks (RNN) and Fully connected neural networks (FCNN), and some state-of-the-art deep learning-based prediction tools, including GPS2.1, NetPhos, PPRED, Musite, PhosphoSVM, SKIPHOS, and DeepPhos. Our model achieves a good performance on the training datasets of Serine (S), Threonine (T), and Tyrosine (Y), with AUC values of 0.8579, 0.8335, and 0.6953 using 10-fold cross-validation tests, respectively, and demonstrates that the presented TransPhos tool considerably outperforms competing predictors in general protein phosphorylation site prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.