The activation of the TRPM8 channel, a member of the large class of TRP ion channels, has been reported to be involved in overactive bladder and painful bladder syndrome, although an endogenous activator has not been identified. In this study, N-(3-aminopropyl)-2-{[(3-methylphenyl) methyl]oxy}-N-(2-thienylmethyl)benzamide hydrochloride salt (AMTB) was evaluated as a TRPM8 channel blocker and used as a tool to evaluate the effects of this class of ion channel blocker on volume-induced bladder contraction and nociceptive reflex responses to noxious bladder distension in the rat. AMTB inhibits icilin-induced TRPM8 channel activation as measured in a Ca(2+) influx assay, with a pIC(50) of 6.23. In the anesthetized rat, intravenous administration of AMTB (3 mg/kg) decreased the frequency of volume-induced bladder contractions, without reducing the amplitude of contraction. The nociceptive response was measured by analyzing both visceromotor reflex (VMR) and cardiovascular (pressor) responses to urinary bladder distension (UBD) under 1% isoflurane. AMTB (10 mg/kg) significantly attenuated reflex responses to noxious UBD to 5.42 and 56.51% of the maximal VMR response and pressor response, respectively. The ID50 value on VMR response was 2.42 +/- 0.46 mg/kg. These results demonstrate that TRPM8 channel blocker can act on the bladder afferent pathway to attenuate the bladder micturition reflex and nociceptive reflex responses in the rat. Targeting TRPM8 channel may provide a new therapeutic opportunity for overactive bladder and painful bladder syndrome.
The objective of this study was to examine the antinociceptive effects of peripherally restricted kappa-opioid receptor agonists (ORAs) in a rat model of inflammatory bowel disease produced by intracolonic instillation of trinitrobenzine sulfonic acid (TNBS). Antinociceptive effects of mu-(morphine) and kappa-ORAs (EMD 61,753 and ICI 204,488) were evaluated in a behavioral model of visceral nociception. The effects of these agonists and a delta-ORA (SNC 80) on responses of pelvic nerve afferent fibers innervating the colon were also tested. In the behavioral study, systemic injections of morphine and both kappa-ORAs dose-dependently inhibited the visceromotor response to colorectal distension in rats with uninflamed or inflamed colons. The inhibitory effects of kappa-ORAs, but not morphine, were significantly greater in rats with colons inflamed 4 days previously by TNBS. A mu-receptor-selective dose (30 microg/kg) of naloxone methiodide (NLXM) blocked the inhibitory effect of morphine, but not of EMD 61,753. In the single-fiber study, neither morphine nor the delta-ORA SNC 80 attenuated the responses of pelvic nerve afferent fibers, whereas kappa-ORAs dose-dependently inhibited responses of pelvic nerve afferent fibers with significantly greater potency in the inflamed colon. Pretreatment with a non-opioid receptor-selective dose (2 mg/kg) of NLXM produced a rightward shift in the dose-response function of EMD 61,753. The greater potency of kappa-ORAs in the TNBS-inflamed condition suggests a peripheral upregulation of kappa-opioid receptors in colonic inflammation.
A rat model of bladder reflex contraction (BRC) was used to determine the optimal frequency and intensity of spinal nerve (SN) stimulation to produce neuromodulation of bladder activity and to assess the therapeutic mechanisms of this neuromodulation. In anesthetized female rats (urethane 1.2 g/kg ip), a wire electrode was used to produce bilateral stimulation of the L6 SN. A cannula was placed into the bladder via the urethra, and the urethra was ligated to ensure an isovolumetric bladder. Saline infusion induced BRC. Electrical stimulation of the SN produced a frequency- and intensity-dependent attenuation of the frequency of bladder contractions. Ten-herz stimulation produced maximal inhibition; lower and higher stimulation frequency produced less attenuation of BRC. Attenuation of bladder contraction frequency was directly proportional to the current intensity. At 10 Hz, stimulation using motor threshold pulses (T(mot)) produced a delayed inhibition of the frequency of bladder contractions to 34 ± 11% of control. Maximal bladder inhibition appeared at 10 min poststimulation. High current intensity at 0.6 mA (∼6 * T(mot)) abolished bladder contraction during stimulation, and the inhibition was sustained for 10 min poststimulation (prolonged inhibition). Furthermore, in rats pretreated with capsaicin (125 mg/kg sc), stimulation produced a stronger inhibition of BRC. The inhibitory effects on bladder contraction may be mediated by both afferent and efferent mechanisms. Lower intensities of stimulation may activate large, fast-conducting fibers and actions through the afferent limb of the micturition reflex arc in SN neuromodulation. Higher intensities may additionally act through the efferent limb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.