The existence of clouds is one of the main factors that contributes to missing information in optical remote sensing images, restricting their further applications for Earth observation, so how to reconstruct the missing information caused by clouds is of great concern. Inspired by the image-to-image translation work based on convolutional neural network model and the heterogeneous information fusion thought, we propose a novel cloud removal method in this paper. The approach can be roughly divided into two steps: in the first step, a specially designed convolutional neural network (CNN) translates the synthetic aperture radar (SAR) images into simulated optical images in an object-to-object manner; in the second step, the simulated optical image, together with the SAR image and the optical image corrupted by clouds, is fused to reconstruct the corrupted area by a generative adversarial network (GAN) with a particular loss function. Between the first step and the second step, the contrast and luminance of the simulated optical image are randomly altered to make the model more robust. Two simulation experiments and one real-data experiment are conducted to confirm the effectiveness of the proposed method on Sentinel 1/2, GF 2/3 and airborne SAR/optical data. The results demonstrate that the proposed method outperforms state-of-the-art algorithms that also employ SAR images as auxiliary data.
BackgroundAntibiotic resistance has become an increasingly serious problem in the past decades. As an alternative choice, antimicrobial peptides (AMPs) have attracted lots of attention. To identify new AMPs, machine learning methods have been commonly used. More recently, some deep learning methods have also been applied to this problem.ResultsIn this paper, we designed a deep learning model to identify AMP sequences. We employed the embedding layer and the multi-scale convolutional network in our model. The multi-scale convolutional network, which contains multiple convolutional layers of varying filter lengths, could utilize all latent features captured by the multiple convolutional layers. To further improve the performance, we also incorporated additional information into the designed model and proposed a fusion model. Results showed that our model outperforms the state-of-the-art models on two AMP datasets and the Antimicrobial Peptide Database (APD)3 benchmark dataset. The fusion model also outperforms the state-of-the-art model on an anti-inflammatory peptides (AIPs) dataset at the accuracy.ConclusionsMulti-scale convolutional network is a novel addition to existing deep neural network (DNN) models. The proposed DNN model and the modified fusion model outperform the state-of-the-art models for new AMP discovery. The source code and data are available at https://github.com/zhanglabNKU/APIN.
The paper addresses the problem of energy compaction of dense 4D light fields by designing geometry-aware local graph-based transforms. Local graphs are constructed on super-rays that can be seen as a grouping of spatially and geometry-dependent angularly correlated pixels. Both non separable and separable transforms are considered. Despite the local support of limited size defined by the super-rays, the Laplacian matrix of the non separable graph remains of high dimension and its diagonalization to compute the transform eigen vectors remains computationally expensive. To solve this problem, we then perform the local spatio-angular transform in a separable manner. We show that when the shape of corresponding super-pixels in the different views is not isometric, the basis functions of the spatial transforms are not coherent, resulting in decreased correlation between spatial transform coefficients. We hence propose a novel transform optimization method that aims at preserving angular correlation even when the shapes of the super-pixels are not isometric. Experimental results show the benefit of the approach in terms of energy compaction. A coding scheme is also described to assess the ratedistortion perfomances of the proposed transforms and is compared to state of the art encoders namely HEVC and JPEG Pleno VM 1.1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.