The adverse effects of heavy metal ions on the heart functions of lower vertebrates are largely unknown. In the present study, the effects of Cd2+, Cu2+, and Cu+ on the cardiac functions of the heart isolated from dogfish shark, Squalus acanthias, including the epicardial electrocardiogram, ventricular developed pressure (VDP), and heart beating rate, were studied. Cadmium (10 to 100 microM) significantly decreased VDP of the isolated shark hearts in a reversible manner. However, heart beating rate was not affected by cadmium. Cadmium also induced a transient modification of the amplitude and the form of the QRS complex. Cupric ion transiently increased VDP in a concentration-dependent manner, whereas cuprous ion (1 to 100 microM) did not markedly alter the cardiac functions of shark. Cupric or cuprous ions did not change heart beating rate and electrocardiogram at concentrations of 10 to 100 microM. Our results, for the first time, demonstrated the effects of cadmium on shark heart and indicated that the cardiac effects of copper are valence dependent. An elucidation of heavy metal effects on fish cardiac functions will help to understand the complex toxicological properties of heavy metals in different species and tissues, and will provide information for management of pollution control and marine resource protection.
It was shown that ceruloplasmin, apart from the known oxidative conversion of dopamine into melanin, can also produce (DHI)-melanin from 5,6-dihydroxyindole and THP-melanin from tetrahydropapaveroline. Ceruloplasmin acts as an oxidase and the kinetic parameters for these oxidative reactions are reported. Since these ceruloplasmin-catalyzed reactions occur also at pH 7.4, they could have a significant physiological impact. This ceruloplasmin-oxidasic activity is enhanced by copper ions and inhibited by chelators, such as ethylenediaminetetraacetic acid (EDTA) and desferoxamine (DEF). Some possible implication of melanin production in blood are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.