BACKGROUND Coronavirus disease 2019 (COVID-19) has been far more devastating than expected, showing no signs of slowing down at present. Heilongjiang Province is the most northeastern province of China, and has cold weather for nearly half a year and an annual temperature difference of more than 60ºC, which increases the underlying morbidity associated with pulmonary diseases, and thus leads to lung dysfunction. The demographic features and laboratory parameters of COVID-19 deceased patients in Heilongjiang Province, China with such climatic characteristics are still not clearly illustrated. AIM To illustrate the demographic features and laboratory parameters of COVID-19 deceased patients in Heilongjiang Province by comparing with those of surviving severe and critically ill cases. METHODS COVID-19 deceased patients from different hospitals in Heilongjiang Province were included in this retrospective study and compared their characteristics with those of surviving severe and critically ill cases in the COVID-19 treatment center of the First Affiliated Hospital of Harbin Medical University. The surviving patients were divided into severe group and critically ill group according to the Diagnosis and Treatment of New Coronavirus Pneumonia (the seventh edition). Demographic data were collected and recorded upon admission. Laboratory parameters were obtained from the medical records, and then compared among the groups. RESULTS Twelve COVID-19 deceased patients, 27 severe cases and 26 critically ill cases were enrolled in this retrospective study. No differences in age, gender, and number of comorbidities between groups were found. Neutrophil percentage (NEUT%), platelet (PLT), C-reactive protein (CRP), creatine kinase isoenzyme (CK-MB), serum troponin I (TNI) and brain natriuretic peptides (BNP) showed significant differences among the groups ( P = 0.020, P = 0.001, P < 0.001, P = 0.001, P < 0.001, P < 0.001, respectively). The increase of CRP, D-dimer and NEUT% levels, as well as the decrease of lymphocyte count (LYMPH) and PLT counts, showed significant correlation with death of COVID-19 patients ( P = 0.023, P = 0.008, P = 0.045, P = 0.020, P = 0.015, respectively). CONCLUSION Compared with surviving severe and critically ill cases, no special demographic features of COVID-19 deceased patients were observed, while some laboratory parameters including NEUT%, PLT, CRP, CK-MB, TNI and BNP showed significant differences. COVID-19 deceased patients had higher CRP, D-dimer and NEUT% levels and lower LYMPH and PLT counts.
The mortality of sepsis and septic shock remains high worldwide. Neutrophil extracellular traps (NETs) release is a major cause of organ failure and mortality in sepsis. Targeting Gasdermin D (GSDMD) can restrain NETs formation, which is promising for sepsis management. However, no medicine is identified without severe safety concerns for this purpose. Xuebijing injection (XBJ) has been demonstrated to alleviate the clinical symptoms of COVID-19 and sepsis patients, but there are not enough animal studies to reveal its mechanisms in depth. Therefore, we wondered whether XBJ relieved pulmonary damage in sepsis by suppressing NETs formation and adopted a clinically relevant polymicrobial infection model to test this hypothesis. Firstly, XBJ effectively reversed lung injury caused by sepsis and restrained neutrophils recruitment to lung by down-regulating proinflammatory chemokines, such as CSF-3, CXCL-2, and CXCR-2. Strikingly, we found that XBJ significantly reduced the expressions of NETs component proteins, including citrullinated histone H3 (CitH3), myeloperoxidase (MPO), and neutrophil elastase (NE). GSDMD contributes to the production of NETs in sepsis. Notably, XBJ exhibited a reduced effect on the expressions of GSDMD and its upstream regulators. Besides, we also revealed that XBJ reversed NETs formation by inhibiting the expressions of GSDMD-related genes. Collectively, we demonstrated XBJ protected against sepsis-induced lung injury by reversing GSDMD-related pathway to inhibit NETs formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.