The method referred to as “systemic evolution of ligands by exponential enrichment” (SELEX) was introduced in 1990 and ever since has become an important tool for the identification and screening of aptamers. Such nucleic acids can recognize and bind to their corresponding targets (analytes) with high selectivity and affinity, and aptamers therefore have become attractive alternatives to traditional antibodies not the least because they are much more stable. Meanwhile, they have found numerous applications in different fields including food quality and safety monitoring. This review first gives an introduction into the selection process and to the evolution of SELEX, then covers applications of aptamers in the surveillance of food safety (with subsections on absorptiometric, electrochemical, fluorescent and other methods), and then gives conclusions and perspectives. The SELEX method excels by its features of in vitro, high throughput and ease of operation. This review contains 86 references.
We present a computationally inexpensive analytical model for simulating celestial polarization patterns in variable conditions. We combine both the singularity theory of Dennis and Berry [1] and the intensity model of Perez [2] such that our single model describes 3 key sets of data: 1) The overhead distribution of the degree of polarization as well as the existence of neutral points in the sky; 2) the change in sky polarization as a function of the turbidity of the atmosphere; and 3) sky polarization patterns as a function of wavelength, calculated in this work from the ultraviolet (UV) to the near infra-red (IR). To verify the performance of our model we generate accurate reference data using a numerical radiative transfer model and statistical comparisons between these two methods demonstrate no significant difference in almost all situations. The development of our analytical model provides a novel method for efficiently calculating the overhead skylight polarization pattern. This provides a new tool of particular relevance for our understanding of animals that use the celestial polarization pattern as a source of visual information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.