Astrophysical jets are ubiquitous in the universe and often associated with compact objects, and their interactions with the ambient medium not only dissipate their own energy but also provide ideal circumstances for particle acceleration. By means of theoretical analysis and particle-in-cell simulations, here we study the ion acoustic shock wave (IASW) formation and consequent ion acceleration when electron–positron (e − e +) jets are injected into ambient electron–ion plasmas. It is found that the Buneman instability can be excited first, which induces the formation of an ion acoustic wave (IAW). As the amplitude of the IAW increases, its waveform is steepened and subsequently an IASW is formed. Some ions in the ambient plasmas will be reflected when they encounter the IASW, and thus can be accelerated to form an energetic ion beam. For an initial e − e + jet with the Lorentz factor γ 0 = 100 and the ion–electron mass ratio m i /m e = 1836, the ions can be accelerated up to 580 MeV. This study deepens our understanding of the fireball model of gamma-ray bursts, the shock model of pulsar wind nebulae, the origin of cosmic rays, and other related astrophysical processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.