The purpose of this study was to investigate the underlying molecular mechanisms of fracture healing mediated by bone marrow mesenchymal stem cells. Differentially expressed microRNAs in acutely injured subjects and healthy volunteers were screened by microarray analysis. The dual luciferase reporter system was used to verify whether insulin‐like growth factor 1 (IGF1) was the direct target gene regulated by miR‐148a. The expression level of miR‐148a and IGF1 after osteogenic differentiation was detected by quantitative real‐time polymerase chain reaction. Western blot was used to determine the protein expression of bone markers, including IGF1, runt‐related transcription factor 2 (Runx2), osteocalcin, and osteopontin in rat bone marrow–derived mesenchymal stem cells. Alkaline phosphatase and alizarin red staining was used to detect alkaline phosphatase activity and calcium deposition. An animal fracture model was used for in vivo experiments. MiR‐148a was highly expressed in acutely injured subjects compared with healthy volunteers, and IGF1 was a target of miR‐148a. Moreover, compared with the negative control group, IGF1 messenger RNA expression was significantly increased in the miR‐148a antagomir group. During osteogenic differentiation, the expression of IGF1, Runx2, osteocalcin, and osteopontin was higher in the miR‐148a antagomir group than other groups. In vivo experiments further confirmed that upregulation of IGF1 enhanced fracture healing efficiently by decreasing callus width and area and improving bone mineral density, maximum load, stiffness, and energy absorption. It was proved that IGF1 was the direct target gene of miR‐148a, and the use of rat bone marrow–derived mesenchymal stem cells with low expression of miR‐148a could improve fracture healing by upregulating IGF1.
Excessive exposure of the eye to ultraviolet B light (UVB) leads to corneal edema and opacification because of the apoptosis of the corneal endothelium. Our previous study found that nicotinamide (NIC), the precursor of nicotinamide adenine dinucleotide (NAD), could inhibit the endothelial-mesenchymal transition and accelerate healing the wound to the corneal endothelium in the rabbit. Here we hypothesize that NIC may possess the capacity to protect the cornea from UVB-induced endothelial apoptosis. Therefore, a mouse model and a cultured cell model were used to examine the effect of NAD+ precursors, including NIC, nicotinamide mononucleotide (NMN), and NAD, on the UVB-induced apoptosis of corneal endothelial cells (CECs). The results showed that UVB irradiation caused apparent corneal edema and cell apoptosis in mice, accompanied by reduced levels of NAD+ and its key biosynthesis enzyme, nicotinamide phosphoribosyltransferase (NAMPT), in the corneal endothelium. However, the subconjunctival injection of NIC, NMN, or NAD+ effectively prevented UVB-induced tissue damage and endothelial cell apoptosis in the mouse cornea. Moreover, pretreatment using NIC, NMN, and NAD+ increased the survival rate and inhibited the apoptosis of cultured human CECs irradiated by UVB. Mechanistically, pretreatment using nicotinamide (NIC) recovered the AKT activation level and decreased the BAX/BCL-2 ratio. In addition, the capacity of NIC to protect CECs was fully reversed in the presence of the AKT inhibitor LY294002. Therefore, we conclude that NAD+ precursors can effectively prevent the apoptosis of the corneal endothelium through reactivating AKT signaling; this represents a potential therapeutic approach for preventing UVB-induced corneal damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.