In this paper, the consistent tanh expansion (CTE) method and the truncated Painlevé analysis are applied to the Kraenkel-Manna-Merle (KMM) system, which describes propagation of short wave in ferromagnets. Two series of analytic solutions of the original KMM system (free of damping effect) are obtained via the CTE method. The interaction solutions contain an arbitrary function, which provides a wide variety of choices to acquire new propagation structures. Particularly, the breather soliton, periodic oscillation soliton and multipole instanton are obtained. Furthermore, we obtain some exact solutions of the damped-KMM equation at the first time. On the other hand, a coupled equation containing quadri-linear form and trilinear form for the original KMM system is obtained by the truncated Painlevé analysis, and the rogue wave solution and interaction solutions between rogue wave and multi-soliton for the KMM system are discussed.
The Bäcklund transformation(BT) of the mKdV-sG equation is constructed by introducing a new transformation. Infinitely many nonlocal symmetries are obtained in terms of its BT. The soliton-periodic wave interaction solutions are explicitly derived by the classical Lie-group reduction method. Particularly, some special concrete soliton and periodic wave interaction solutions and their behaviours are discussed both in analytical and graphical ways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.