In this study, we used a simple and cost-effective method to fabricate triboelectric nanogenerators (TENGs) based on biowaste eggshell membranes (EMs). We prepared stretchable electrodes with various types of EMs (hen, duck, goose, and ostrich) and employed them as positive friction materials for bio-TENGs. A comparison of the electrical properties of the hen, duck, goose, and ostrich EMs revealed that the output voltage of the ostrich EM could reach up to 300 V, due to its abundant functional groups, natural fiber structure, high surface roughness, high surface charge, and high dielectric constant. The output power of the resulting device reached 0.18 mW, sufficient to power 250 red light-emitting diodes simultaneously, as well as a digital watch. This device also displayed good durability when subjected to 9000 cycles at 30 N at a frequency of 3 Hz. Furthermore, we designed an ostrich EM-TENG as a smart sensor for the detection of body motion, including leg movement and the pressing of different numbers of fingers.
This paper describes a simple electrospinning approach for fabricating poly(3-hexylthiophene) (P3HT)/poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) semiconductive nanofiber mat triboelectric nanogenerators (TENGs). Measurements of the electrical properties of the P3HT/PVDF-HFP semiconductive nanofiber TENGs revealed that the output voltage could be enhanced up to 78 V with an output current of 7 μA. The output power of the device reached 0.55 mW, sufficient to power 500 red light-emitting diodes instantaneously, as well as a digital watch. The P3HT/PVDF-HFP semiconductive nanofiber TENG could be used not only as a self-powered device but also as a sensor for monitoring human action. Furthermore, it displayed good durability when subjected to 20,000 cycles of an external force test.
Because triboelectric nanogenerators (TENGs) convert mechanical energy into electricity, they are sustainable energy sources for powering a diverse range of intelligent sensing and monitoring devices. To enhance the electrical output...
Better sensitivity of a biosensor could boost up the detection limit of analytes, thus a must in the fields of bio-sensing and bio-detection. To further enhance the sensitivity of a biosensor, in this work, we design an oblique-flat-sheet metamaterial perfect absorber (MPA) to concentrate the hot spots within air between the oblique flat sheet and the continuous ground metal, thus enabling fully interaction between analytes and hot spots. The corresponding field distributions in simulation corroborated our assumption and its sensitivity could be up to 1049 nm/RIU. Then, we fabricated the sample by e-beam lithography process for a seed layer and simply tilting the sample during deposition to obtain oblique flat sheets. When considering the stochastic nature of the deposited multiple oblique flat sheets, we modified the metallic upper resonator of the MPA from the single oblique-flat-sheet into randomly distributed oblique-wire-bundle (OWB) and in simulation, its sensitivity is boosted up to 3319 nm/RIU. In experiments, the measured sensitivity is 1329 nm/RIU under different concentrations of glucose solutions that is four times larger than the 330 nm/RIU of the planar MPA. The higher sensitivity was attributed to that the OWB MPA could provide hot spots within air not only between OWB and grounded metal but also among wires. Moreover, the OWB could also trap and concentrate the analytes locally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.