Road traffic sign detection and recognition play an important role in advanced driver assistance systems (ADAS) by providing real-time road sign perception information. In this paper, we propose an improved (Single Shot Detector) SSD algorithm via multi-feature fusion and enhancement, named MF-SSD, for traffic sign recognition. First, low-level features are fused into high-level features to improve the detection performance of small targets in the SSD. We then enhance the features in different channels to detect the target by enhancing effective channel features and suppressing invalid channel features. Our algorithm gets good results in domestic real-time traffic signs. The proposed MF-SSD algorithm is evaluated with the German Traffic Sign Recognition Benchmark (GTSRB) dataset. The experimental results show that the MF-SSD algorithm has advantages in detecting small traffic signs. Compared with existing methods, it achieves higher detection accuracy, better efficiency, and better robustness in complex traffic environment.
A series of polyimides were synthesized via a polycondensation of 2′,7′-bis(4-aminophenoxy)-spiro(fluorene-9,9′-xanthene) with aromatic tetracarboxylic dianhydrides. They exhibited a low dielectric constant, low moisture absorption, excellent solubility, high glass transition temperatures and high optical transparency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.