It has been recently suggested that large solar energetic particle (SEP) events are often caused by twin CMEs. In the twin-CME scenario, the preceding CME is to provide both an enhanced turbulence level and enhanced seed population at the main CME-driven shock. In this work, we study the effect of the preceding CMEs on the seed population. We examine event-integrated abundance of iron to oxygen ratio (Fe/O) at energies above 25 MeV/nuc for large SEP events in solar cycle 23. We find that the Fe/O ratio (normalized to the reference coronal value of 0.134) ≤ 2.0 for almost all single-CME events and these events tend to have smaller peak intensities. In comparison, the Fe/O ratio of twin-CME events scatters in a larger range, reaching as high as 8, suggesting the presence of flare material from perhaps preceding flares. For extremely large SEP events with peak intensity above 1000 pfu, the Fe/O drop below 2, indicating that in these extreme events the seed particles are dominated by coronal material than flare material. The Fe/O ratios of Ground level enhancement (GLE) events, all being twin-CME events, scatter in a broad range. For a given Fe/O ratio, GLE events tend to have larger peak intensities than non-GLE events. Using velocity dispersion analysis (VDA), we find that GLE events have lower solar particle release (SPR) heights than non-GLE events, agreeing with earlier results by Reames (2009b).
On 2012 March 7, the STEREO Ahead and Behind spacecraft, along with the near-earth spacecraft (e.g. SOHO, Wind) situated between the two STEREO spacecraft, observed an extremely large global solar energetic particle (SEP) event in Solar Cycle 24. Two successive coronal mass ejections (CMEs) have been detected close in time. From the multi-point in-situ observations, it can be found that this SEP event was caused by the first CME, and the second one was not involved. Using the velocity dispersion analysis (VDA), we find that for well magnetically connected point, the energetic protons and electrons are released nearly at the same time. The path lengths to STEREO-B(STB) of protons and electrons have distinct difference and deviate remarkably from the nominal Parker spiral path length, which is likely due to the presence of interplanetary magnetic structures situated between the source and the STB. Also the VDA method seems only to obtain reasonable results at well-connected locations and the inferred energetic particles release times in different energy channels are similar. We suggest that good-connection is crucial for obtaining both accurate release time and path length simultaneously, agreeing with the modeling result of Wang & Qin (2015).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.