A cover system is a crucial component of engineered landfills, to minimize water percolation into the underlying waste. Capillary barriers are an alternative cover system, which has been widely used in the arid and semiarid regions as no cohesive, low-permeability materials are used. However, the performance of capillary barriers in tropical climate has been unsatisfactory (breakthrough observed). In recent years, synthetic water-repellent granular materials have drawn increasing attention due to their distinctive hydraulic behavior (inhibited water infiltration and high water entry pressure), suggesting they may also be used to improve the performance of cover systems. In this study, flume tests were conducted with inclined model slopes under artificial rainfall. By monitoring the surface runoff, lateral diversion, and basal percolation and conducting water balance analysis, the performance of monolithic cover, conventional capillary barrier, and water-repellent cover systems were evaluated. The study revealed that (a) the barrier effect and diversion capacity were significantly strengthened by induced water repellency, providing a promising solution to extend the application of capillary barrier covers; and (b) cover systems can be formed using one raw material to decrease the construction cost, by using synthetic water-repellent soil as the underlying layer.
Water repellent soils can be naturally promoted (e.g. after wildfires) or synthetically induced by mixing with hydrophobic compounds (e.g. polydimethylsiloxane). The study of soil water repellency has lasted for over one century which implied the significant effect of soil water repellency on water infiltration, evaporation, soil strength, and soil stability. Water repellent soils can also be exploited by geotechnical engineers to offer novel and economical solutions for ground infrastructure. This paper synthesizes different methods for assessing soil water repellency based on varied indexes (e.g. contact angle, time for a drop to infiltrate) and with a focus on water entry pressure. Measurements of these parameters in synthetic water- repellent sands were taken, some results of which are summarized with discussion of key factors affecting water repellency. A comparison of these methods shows that water entry pressure can be more representative for assessing the water repellency of bulk samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.