The exploitation of deep resources is necessary for human development. At the same time, high-stress environments that are deep underground bring about great challenges vis-à-vis resource exploitation. A large deep opening is sensitive to high ground stress, and is easily influenced by external interference, which can lead to geologically hazardous occurrences. To investigate the evolution of fracturing and energy in large, deep stopes subjected to dynamic loads, we established a numerical model of a stope in the Gaofeng mine. Using ANSYS/LS-DYNA software, we implemented an implicit solution to initial static stress and an explicit solution for dynamic analysis. Based on our numerical results, we obtained the fracture behavior and energy evolution under coupled static and dynamic loads. To determine the response of ground pressure to mining activity, a 24-channel microseismic monitoring system was designed for the Gaofeng mine based on the numerical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.