This study was aimed to evaluate the performance of DESs functionalized peanut shell (PSD) as biosorbent for removing Cr(VI) from water. The effects of pretreatment, initial concentration, adsorption temperature, kinetics, adsorption isotherm, and thermodynamics were investigated. Scanning electron microscopy (SEM) and Point of Zero charge (pHpzc) techniques were used for characterization of the adsorbents. The results showed that the rigid structure of peanut shell was broken down after DESs modification and the point of zero charge was 6.02 for peanut shell and 6.84 for PSD, which exhibited a slightly acid character. Based on the comparisons of linear and nonlinear analysis of four kinetic models and four isotherms, the pseudo-second-order kinetic model was found to be suitable for describing the adsorption process. The presence of a boundary effect was observed within the range of research, indicating that internal diffusion was not the only rate-controlling step. The equilibrium data were well represented by the Langmuir model rather than the Freundlich, Temkin, and Dubinin–Radushkevich models. The maximum capacity derived was 5.36 mg g−1. Changes in Gibb’s free energy, enthalpy, and entropy revealed that Cr(VI) adsorption onto modified peanut-shell powders was a spontaneous and endothermic process. However, the highest desorption efficiency was only 8.77% by using NaOH as a desorbing agent. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.