Background: Compared with FISH and qRT-PCR analyses, immunohistochemistry (IHC) is the preferred screening test in most pathology practices for ALK-rearrangement detection. With 100% sensitivity and 98% specificity, the VENTANA ALK (D5F3) IHC assay has been approved in the EU and some Asian countries for ALK-rearrangement detection. However, an automated Ventana IHC platform is not available in most pathology labs. In this study, we evaluated the applicability of conventional IHC with D5F3 antibody in routine pathological practice and proposed detection methods and procedures that ensure that patients with ALK+ are not missed. Methods: FISH and IHC analyses were performed on 297 lung adenocarcinoma cases. VENTANA IHC and qRT-PCR assay were applied to evaluate ALK-fusion status in the discordant cases of FISH and IHC. The association of ALK+ with clinicopathological characteristics was statistically analyzed.
Recent studies have elucidated the role of lysine-specific demethylase 1 (LSD1), a member of the histone demethylases, in epigenetic regulation of tumor suppressing/promoting genes and neoplastic growth. However, the expression of LSD1 in patients with esophageal squamous cell carcinoma (ESCC) is still unknown. Here, we reported that LSD1 expression was elevated in cancerous tissue and correlated with lymph node metastasis and poorer overall survival in patients with ESCC. Compared to EC109 cells, LSD1 expression was unregulated in aggressive cancer cell lines KYSE450 and KYSE150. Knockdown of LSD1 using lentivirus delivery of LSD1-specific shRNA abrogated the migration and invasion of ESCC cells in vitro. Further, a LSD1 inhibitor, tranylcypromine, suppressed H3K4me2 demethylation and attenuated cellular motility and invasiveness in a dose-dependent manner. Taken together, these data suggested that LSD1 was a potential prognostic maker and may be a molecular target for inhibiting invasion and metastasis in ESCC.
The application of circulating tumor DNA(ctDNA) represents a non-invasive method for tumor detection. Its prognostic significance in patients with colorectal cancer is controversial. We performed a systematic review of data from published studies to assess the prognostic values of ctDNA in patients with colorectal cancer. We searched Medline, Embase, Web of Science, the Cochrane Library, and Scopus databases to identify eligible studies reporting disease-free survival (DFS) and overall survival (OS) stratified by ctDNA prior to December 6, 2016. We evaluated the quality and design of these studies. A total of 22 studies were eligible for systematic review. Among them, 11 studies investigated the prognostic value of ctDNA on disease-free survival (DFS). Seven of 11 studies showed that ctDNA was an independent variable to estimate the probability of DFS by multivariate analyses. Thirteen studies assessed the relationship between ctDNA and overall survival (OS). Eight of 13 studies showed that ctDNA was an independent predictor of worse OS through the use of multivariate analyses. This analysis provides evidence that ctDNA may be a prognostic biomarker, negatively correlated with the survival of patients with colorectal cancer.
Background Constitutive activation of nuclear factor-κB (NF-κB) signaling plays a key role in the development and progression of colorectal carcinoma (CRC). However, the underlying mechanisms of excessive activation of NF-κB signaling remain largely unknown. Methods We used high throughput RNA sequencing to identify differentially expressed circular RNAs (circRNAs) between normal human intestinal epithelial cell lines and CRC cell lines. The identification of protein encoded by circPLCE1 was performed using LC–MS. The function of novel protein was validated in vitro and in vivo by gain or loss of function assays. Mechanistic results were concluded by immunoprecipitation analyses. Results A novel protein circPLCE1-411 encoded by circular RNA circPLCE1 was identified as a crucial player in the NF-κB activation of CRC. Mechanistically, circPLCE1-411 promoted the ubiquitin-dependent degradation of the critical NF-κB regulator RPS3 via directly binding the HSP90α/RPS3 complex to facilitate the dissociation of RPS3 from the complex, thereby reducing NF-κB nuclear translocation in CRC cells. Functionally, circPLCE1 inhibited tumor proliferation and metastasis in CRC cells, as well as patient-derived xenograft and orthotopic xenograft tumor models. Clinically, circPLCE1 was downregulated in CRC tissues and correlated with advanced clinical stages and poor survival. Conclusions circPLCE1 presents an epigenetic mechanism which disrupts NF-κB nuclear translocation and serves as a novel and promising therapeutic target and prognostic marker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.