Arbuscularmycorrhizal fungi (AMF) are a class of beneficial microorganisms that are widely distributed in soil ecosystems and can form symbionts with 80% of terrestrial higher plants, and improve the nutritional status of plants. The use of AMF as a biocontrol method to antagonize soil-borne pathogens has received increasing interest from phytopathologists and ecologists. In this paper, the mechanisms of resistance to diseases induced by AMF and the application of AMF to plant fungal, bacterial, and nematode diseases have been summarized. This study aimed to enhance the potential use of AMF as a biological control method to prevent plant diseases in the future. Root morphological alteration characteristics were explained, including the influence of AMF on root structure, function, and the regulation of AMF via secondary metabolites. AMF can improve the rhizosphere environment by influencing the physical and chemical proprieties of soil, enhancing the growth of other beneficial microorganisms, and by competing with pathogenic microorganisms. Two microorganism types may compete for the same invasive sites in root systems and regulate nutrition distribution. AMF can induce the host plant to form defense systems, including improving phytohormone concentrations, inducing signal substrate production, gene expression regulation, and enhancing protein production.
Trichoderma is mainly used to control soil-borne diseases as well as some leaf and panicle diseases of various plants. Trichoderma can not only prevent diseases but also promotes plant growth, improves nutrient utilization efficiency, enhances plant resistance, and improves agrochemical pollution environment. Trichoderma spp. also behaves as a safe, low-cost, effective, eco-friendly biocontrol agent for different crop species. In this study, we introduced the biological control mechanism of Trichoderma in plant fungal and nematode disease, including competition, antibiosis, antagonism, and mycoparasitism, as well as the mechanism of promoting plant growth and inducing plant systemic resistance between Trichoderma and plants, and expounded on the application and control effects of Trichoderma in the control of various plant fungal and nematode diseases. From an applicative point of view, establishing a diversified application technology for Trichoderma is an important development direction for its role in the sustainable development of agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.